脉冲雷达探测采用多层神经网络

H. Kwan, C. K. Lee
{"title":"脉冲雷达探测采用多层神经网络","authors":"H. Kwan, C. K. Lee","doi":"10.1109/IJCNN.1989.118681","DOIUrl":null,"url":null,"abstract":"The application of a multilayer feedforward neural network to pulse radar detection or pulse compression is presented. For illustration, the Barker code was used. This network has 13 input units, 3 hidden units, and 1 output unit. Backpropagation learning was used to train the network. A 40-dB peak signal-to-noise ratio can be achieved easily. The processing time is expected to be much faster than that obtained using correlation and mismatched filtering approaches.<<ETX>>","PeriodicalId":199877,"journal":{"name":"International 1989 Joint Conference on Neural Networks","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Pulse radar detection using a multi-layer neural network\",\"authors\":\"H. Kwan, C. K. Lee\",\"doi\":\"10.1109/IJCNN.1989.118681\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The application of a multilayer feedforward neural network to pulse radar detection or pulse compression is presented. For illustration, the Barker code was used. This network has 13 input units, 3 hidden units, and 1 output unit. Backpropagation learning was used to train the network. A 40-dB peak signal-to-noise ratio can be achieved easily. The processing time is expected to be much faster than that obtained using correlation and mismatched filtering approaches.<<ETX>>\",\"PeriodicalId\":199877,\"journal\":{\"name\":\"International 1989 Joint Conference on Neural Networks\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International 1989 Joint Conference on Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.1989.118681\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International 1989 Joint Conference on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.1989.118681","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

介绍了一种多层前馈神经网络在脉冲雷达探测或脉冲压缩中的应用。为了说明,这里使用了巴克代码。该网络有13个输入单元、3个隐藏单元和1个输出单元。采用反向传播学习对网络进行训练。可轻松实现40 db峰值信噪比。预计处理时间比使用相关和不匹配滤波方法获得的处理时间要快得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pulse radar detection using a multi-layer neural network
The application of a multilayer feedforward neural network to pulse radar detection or pulse compression is presented. For illustration, the Barker code was used. This network has 13 input units, 3 hidden units, and 1 output unit. Backpropagation learning was used to train the network. A 40-dB peak signal-to-noise ratio can be achieved easily. The processing time is expected to be much faster than that obtained using correlation and mismatched filtering approaches.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信