利用卷积神经网络探索数据增强以改进音乐类型分类

R. L. Aguiar, Yandre M. G. Costa, C. Silla
{"title":"利用卷积神经网络探索数据增强以改进音乐类型分类","authors":"R. L. Aguiar, Yandre M. G. Costa, C. Silla","doi":"10.1109/IJCNN.2018.8489166","DOIUrl":null,"url":null,"abstract":"In this work we address the automatic music genre classification as a pattern recognition task. The content of the music pieces were handled in the visual domain, using spectrograms created from the audio signal. This kind of image has been successfully used in this task since 2011 by extracting handcrafted features based on texture, since it is the main visual attribute found in spectrograms. In this work, the patterns were described by representation learning obtained with the use of convolutional neural network (CNN). CNN is a deep learning architecture and it has been widely used in the pattern recognition literature. Overfitting is a recurrent problem when a classification task is addressed by using CNN, it may occur due to the lack of training samples and/or due to the high dimensionality of the space. To increase the generalization capability we propose to explore data augmentation techniques. In this work, we have carefully selected strategies of data augmentation that are suitable for this kind of application, which are: adding noise, pitch shifting, loudness variation and time stretching. Experiments were conducted on the Latin Music Database (LMD), and the best obtained accuracy overcame the state of the art considering approaches based only in CNN.","PeriodicalId":134599,"journal":{"name":"IEEE International Joint Conference on Neural Network","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Exploring Data Augmentation to Improve Music Genre Classification with ConvNets\",\"authors\":\"R. L. Aguiar, Yandre M. G. Costa, C. Silla\",\"doi\":\"10.1109/IJCNN.2018.8489166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we address the automatic music genre classification as a pattern recognition task. The content of the music pieces were handled in the visual domain, using spectrograms created from the audio signal. This kind of image has been successfully used in this task since 2011 by extracting handcrafted features based on texture, since it is the main visual attribute found in spectrograms. In this work, the patterns were described by representation learning obtained with the use of convolutional neural network (CNN). CNN is a deep learning architecture and it has been widely used in the pattern recognition literature. Overfitting is a recurrent problem when a classification task is addressed by using CNN, it may occur due to the lack of training samples and/or due to the high dimensionality of the space. To increase the generalization capability we propose to explore data augmentation techniques. In this work, we have carefully selected strategies of data augmentation that are suitable for this kind of application, which are: adding noise, pitch shifting, loudness variation and time stretching. Experiments were conducted on the Latin Music Database (LMD), and the best obtained accuracy overcame the state of the art considering approaches based only in CNN.\",\"PeriodicalId\":134599,\"journal\":{\"name\":\"IEEE International Joint Conference on Neural Network\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE International Joint Conference on Neural Network\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2018.8489166\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Joint Conference on Neural Network","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2018.8489166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

在这项工作中,我们将音乐类型自动分类作为一种模式识别任务。音乐片段的内容是在视觉领域处理的,使用由音频信号产生的频谱图。自2011年以来,这种基于纹理提取手工特征的图像已成功用于该任务,因为纹理是光谱图中发现的主要视觉属性。在这项工作中,使用卷积神经网络(CNN)获得的表示学习来描述模式。CNN是一种深度学习架构,在模式识别文献中得到了广泛的应用。当使用CNN处理分类任务时,过拟合是一个反复出现的问题,它可能是由于缺乏训练样本和/或由于空间的高维数而发生的。为了提高泛化能力,我们建议探索数据增强技术。在这项工作中,我们精心选择了适合这类应用的数据增强策略,分别是:添加噪声、音调移动、响度变化和时间拉伸。在拉丁音乐数据库(LMD)上进行了实验,获得的最佳准确度克服了仅基于CNN的方法的最先进水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploring Data Augmentation to Improve Music Genre Classification with ConvNets
In this work we address the automatic music genre classification as a pattern recognition task. The content of the music pieces were handled in the visual domain, using spectrograms created from the audio signal. This kind of image has been successfully used in this task since 2011 by extracting handcrafted features based on texture, since it is the main visual attribute found in spectrograms. In this work, the patterns were described by representation learning obtained with the use of convolutional neural network (CNN). CNN is a deep learning architecture and it has been widely used in the pattern recognition literature. Overfitting is a recurrent problem when a classification task is addressed by using CNN, it may occur due to the lack of training samples and/or due to the high dimensionality of the space. To increase the generalization capability we propose to explore data augmentation techniques. In this work, we have carefully selected strategies of data augmentation that are suitable for this kind of application, which are: adding noise, pitch shifting, loudness variation and time stretching. Experiments were conducted on the Latin Music Database (LMD), and the best obtained accuracy overcame the state of the art considering approaches based only in CNN.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信