自动微笑和皱眉识别与动态耳机

Seungchul Lee, Chulhong Min, A. Montanari, Akhil Mathur, Youngjae Chang, Junehwa Song, F. Kawsar
{"title":"自动微笑和皱眉识别与动态耳机","authors":"Seungchul Lee, Chulhong Min, A. Montanari, Akhil Mathur, Youngjae Chang, Junehwa Song, F. Kawsar","doi":"10.1145/3311823.3311869","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce inertial signals obtained from an earable placed in the ear canal as a new compelling sensing modality for recognising two key facial expressions: smile and frown. Borrowing principles from Facial Action Coding Systems, we first demonstrate that an inertial measurement unit of an earable can capture facial muscle deformation activated by a set of temporal micro-expressions. Building on these observations, we then present three different learning schemes - shallow models with statistical features, hidden Markov model, and deep neural networks to automatically recognise smile and frown expressions from inertial signals. The experimental results show that in controlled non-conversational settings, we can identify smile and frown with high accuracy (F1 score: 0.85).","PeriodicalId":433578,"journal":{"name":"Proceedings of the 10th Augmented Human International Conference 2019","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Automatic Smile and Frown Recognition with Kinetic Earables\",\"authors\":\"Seungchul Lee, Chulhong Min, A. Montanari, Akhil Mathur, Youngjae Chang, Junehwa Song, F. Kawsar\",\"doi\":\"10.1145/3311823.3311869\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce inertial signals obtained from an earable placed in the ear canal as a new compelling sensing modality for recognising two key facial expressions: smile and frown. Borrowing principles from Facial Action Coding Systems, we first demonstrate that an inertial measurement unit of an earable can capture facial muscle deformation activated by a set of temporal micro-expressions. Building on these observations, we then present three different learning schemes - shallow models with statistical features, hidden Markov model, and deep neural networks to automatically recognise smile and frown expressions from inertial signals. The experimental results show that in controlled non-conversational settings, we can identify smile and frown with high accuracy (F1 score: 0.85).\",\"PeriodicalId\":433578,\"journal\":{\"name\":\"Proceedings of the 10th Augmented Human International Conference 2019\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 10th Augmented Human International Conference 2019\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3311823.3311869\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 10th Augmented Human International Conference 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3311823.3311869","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

在本文中,我们引入了从放置在耳道中的耳塞获得的惯性信号作为一种新的令人信服的感知方式来识别两种关键的面部表情:微笑和皱眉。借用面部动作编码系统的原理,我们首先证明了耳朵的惯性测量单元可以捕捉由一组时间微表情激活的面部肌肉变形。在这些观察的基础上,我们提出了三种不同的学习方案——具有统计特征的浅模型、隐马尔可夫模型和从惯性信号中自动识别微笑和皱眉表情的深度神经网络。实验结果表明,在受控的非会话环境下,我们可以准确地识别微笑和皱眉(F1得分:0.85)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic Smile and Frown Recognition with Kinetic Earables
In this paper, we introduce inertial signals obtained from an earable placed in the ear canal as a new compelling sensing modality for recognising two key facial expressions: smile and frown. Borrowing principles from Facial Action Coding Systems, we first demonstrate that an inertial measurement unit of an earable can capture facial muscle deformation activated by a set of temporal micro-expressions. Building on these observations, we then present three different learning schemes - shallow models with statistical features, hidden Markov model, and deep neural networks to automatically recognise smile and frown expressions from inertial signals. The experimental results show that in controlled non-conversational settings, we can identify smile and frown with high accuracy (F1 score: 0.85).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信