在线谐波辨识的自适应线性学习:附研究案例综述

P. Wira, Thien-Minh Nguyen
{"title":"在线谐波辨识的自适应线性学习:附研究案例综述","authors":"P. Wira, Thien-Minh Nguyen","doi":"10.1109/IJCNN.2013.6706970","DOIUrl":null,"url":null,"abstract":"This work reviews Adaline-based techniques for estimating Fourier series. The Adaline, with its linear structure and learning, fits a Fourier series by expressing any periodic signal as a sum of harmonic terms. The learning with elementary harmonic inputs enforces the weights to converge to the amplitudes. The Adaline therefore individually identifies the amplitudes of the harmonic terms present in the measured signal in real-time. Relevant study cases are provided. Performances are evaluated and show that harmonic terms of the signals are efficiently estimated.","PeriodicalId":376975,"journal":{"name":"The 2013 International Joint Conference on Neural Networks (IJCNN)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Adaptive linear learning for on-line harmonic identification: An overview with study cases\",\"authors\":\"P. Wira, Thien-Minh Nguyen\",\"doi\":\"10.1109/IJCNN.2013.6706970\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work reviews Adaline-based techniques for estimating Fourier series. The Adaline, with its linear structure and learning, fits a Fourier series by expressing any periodic signal as a sum of harmonic terms. The learning with elementary harmonic inputs enforces the weights to converge to the amplitudes. The Adaline therefore individually identifies the amplitudes of the harmonic terms present in the measured signal in real-time. Relevant study cases are provided. Performances are evaluated and show that harmonic terms of the signals are efficiently estimated.\",\"PeriodicalId\":376975,\"journal\":{\"name\":\"The 2013 International Joint Conference on Neural Networks (IJCNN)\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 2013 International Joint Conference on Neural Networks (IJCNN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2013.6706970\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2013 International Joint Conference on Neural Networks (IJCNN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2013.6706970","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

这项工作回顾了基于adaline的估计傅里叶级数的技术。Adaline具有线性结构和学习能力,通过将任何周期信号表示为谐波项的和来拟合傅立叶级数。初等谐波输入的学习使权值收敛于幅值。因此,Adaline可以单独识别实时测量信号中存在的谐波项的幅度。并提供了相关的研究案例。结果表明,该方法能有效地估计信号的谐波项。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive linear learning for on-line harmonic identification: An overview with study cases
This work reviews Adaline-based techniques for estimating Fourier series. The Adaline, with its linear structure and learning, fits a Fourier series by expressing any periodic signal as a sum of harmonic terms. The learning with elementary harmonic inputs enforces the weights to converge to the amplitudes. The Adaline therefore individually identifies the amplitudes of the harmonic terms present in the measured signal in real-time. Relevant study cases are provided. Performances are evaluated and show that harmonic terms of the signals are efficiently estimated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信