非可逆五元逻辑函数的最小可逆合成

Mozammel H. A. Khan, Raqibul Hasan
{"title":"非可逆五元逻辑函数的最小可逆合成","authors":"Mozammel H. A. Khan, Raqibul Hasan","doi":"10.1109/ICCIT.2009.5407142","DOIUrl":null,"url":null,"abstract":"Reversible multiple-valued logic circuit has several advantages over reversible binary logic circuit. In this paper, we propose a method of minimization of Galois field sum of products (GFSOP) expression for non-reversible quinary logic function. We also propose a method of reversible realization of quinary GFSOP expression as cascade of quinary reversible gates. Experimental results show that a significant minimization can be achieved using the proposed minimization method.","PeriodicalId":443258,"journal":{"name":"2009 12th International Conference on Computers and Information Technology","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Minimized reversible synthesis of non-reversible quinary logic function\",\"authors\":\"Mozammel H. A. Khan, Raqibul Hasan\",\"doi\":\"10.1109/ICCIT.2009.5407142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reversible multiple-valued logic circuit has several advantages over reversible binary logic circuit. In this paper, we propose a method of minimization of Galois field sum of products (GFSOP) expression for non-reversible quinary logic function. We also propose a method of reversible realization of quinary GFSOP expression as cascade of quinary reversible gates. Experimental results show that a significant minimization can be achieved using the proposed minimization method.\",\"PeriodicalId\":443258,\"journal\":{\"name\":\"2009 12th International Conference on Computers and Information Technology\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 12th International Conference on Computers and Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCIT.2009.5407142\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 12th International Conference on Computers and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIT.2009.5407142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

可逆多值逻辑电路与可逆二进制逻辑电路相比具有许多优点。本文给出了非可逆五元逻辑函数的伽罗瓦域积和表达式的一种最小化方法。我们还提出了一种五元可逆门级联可逆实现五元GFSOP表达式的方法。实验结果表明,所提出的最小化方法可以实现显著的最小化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Minimized reversible synthesis of non-reversible quinary logic function
Reversible multiple-valued logic circuit has several advantages over reversible binary logic circuit. In this paper, we propose a method of minimization of Galois field sum of products (GFSOP) expression for non-reversible quinary logic function. We also propose a method of reversible realization of quinary GFSOP expression as cascade of quinary reversible gates. Experimental results show that a significant minimization can be achieved using the proposed minimization method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信