混合中文文本分块

PanPan Liao, Y. Liu, Lin Chen
{"title":"混合中文文本分块","authors":"PanPan Liao, Y. Liu, Lin Chen","doi":"10.1109/IRI.2006.252475","DOIUrl":null,"url":null,"abstract":"Text chunking is an effective method to decrease the difficulty of natural language parsing. In this paper, a statistical method based on hidden Markov model (HMM) is used for Chinese text chunking. Moreover, a transformation based error-driven learning approach is adopted to improve the performance. The definition of transformation rule templates is the key problem of this machine learning approach. All the templates are learned from the corpus automatically in this paper. The precision using HMM is 88.19% and the precision is 92.67% combining HMM and transformation based error-driven learning","PeriodicalId":402255,"journal":{"name":"2006 IEEE International Conference on Information Reuse & Integration","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Hybrid Chinese Text Chunking\",\"authors\":\"PanPan Liao, Y. Liu, Lin Chen\",\"doi\":\"10.1109/IRI.2006.252475\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Text chunking is an effective method to decrease the difficulty of natural language parsing. In this paper, a statistical method based on hidden Markov model (HMM) is used for Chinese text chunking. Moreover, a transformation based error-driven learning approach is adopted to improve the performance. The definition of transformation rule templates is the key problem of this machine learning approach. All the templates are learned from the corpus automatically in this paper. The precision using HMM is 88.19% and the precision is 92.67% combining HMM and transformation based error-driven learning\",\"PeriodicalId\":402255,\"journal\":{\"name\":\"2006 IEEE International Conference on Information Reuse & Integration\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE International Conference on Information Reuse & Integration\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRI.2006.252475\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE International Conference on Information Reuse & Integration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRI.2006.252475","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

文本分块是降低自然语言解析难度的有效方法。本文提出了一种基于隐马尔可夫模型(HMM)的统计方法用于中文文本分块。此外,采用基于转换的错误驱动学习方法来提高性能。转换规则模板的定义是这种机器学习方法的关键问题。所有模板都是自动从语料库中学习到的。HMM与基于变换的错误驱动学习相结合的精度为92.67%
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hybrid Chinese Text Chunking
Text chunking is an effective method to decrease the difficulty of natural language parsing. In this paper, a statistical method based on hidden Markov model (HMM) is used for Chinese text chunking. Moreover, a transformation based error-driven learning approach is adopted to improve the performance. The definition of transformation rule templates is the key problem of this machine learning approach. All the templates are learned from the corpus automatically in this paper. The precision using HMM is 88.19% and the precision is 92.67% combining HMM and transformation based error-driven learning
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信