{"title":"用于节能嵌入式系统的多值缓存","authors":"E. Özer, Resit Sendag, David Gregg","doi":"10.1109/ISMVL.2005.28","DOIUrl":null,"url":null,"abstract":"In this paper, we propose three novel cache models using multiple-valued logic (MVL) paradigm to reduce the cache data storage area and cache energy consumption for embedded systems. Multiple-valued caches have significant potential for compact and power-efficient cache array design. The cache models differ from each other depending on whether they store tag and data in binary, radix-r or a mix of both. Our analytical study of cache silicon area shows that an embedded system-on-a-chip (SoC) equipped with a multiple-valued cache model can reduce the cache data storage area up to 6% regardless of cache parameters. Also, our experiments on several embedded benchmarks demonstrate that dynamic cache energy consumption can be reduced up to 62% in a multiple-valued instruction cache in an embedded SoC.","PeriodicalId":340578,"journal":{"name":"35th International Symposium on Multiple-Valued Logic (ISMVL'05)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Multiple-valued caches for power-efficient embedded systems\",\"authors\":\"E. Özer, Resit Sendag, David Gregg\",\"doi\":\"10.1109/ISMVL.2005.28\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose three novel cache models using multiple-valued logic (MVL) paradigm to reduce the cache data storage area and cache energy consumption for embedded systems. Multiple-valued caches have significant potential for compact and power-efficient cache array design. The cache models differ from each other depending on whether they store tag and data in binary, radix-r or a mix of both. Our analytical study of cache silicon area shows that an embedded system-on-a-chip (SoC) equipped with a multiple-valued cache model can reduce the cache data storage area up to 6% regardless of cache parameters. Also, our experiments on several embedded benchmarks demonstrate that dynamic cache energy consumption can be reduced up to 62% in a multiple-valued instruction cache in an embedded SoC.\",\"PeriodicalId\":340578,\"journal\":{\"name\":\"35th International Symposium on Multiple-Valued Logic (ISMVL'05)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"35th International Symposium on Multiple-Valued Logic (ISMVL'05)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISMVL.2005.28\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"35th International Symposium on Multiple-Valued Logic (ISMVL'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL.2005.28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multiple-valued caches for power-efficient embedded systems
In this paper, we propose three novel cache models using multiple-valued logic (MVL) paradigm to reduce the cache data storage area and cache energy consumption for embedded systems. Multiple-valued caches have significant potential for compact and power-efficient cache array design. The cache models differ from each other depending on whether they store tag and data in binary, radix-r or a mix of both. Our analytical study of cache silicon area shows that an embedded system-on-a-chip (SoC) equipped with a multiple-valued cache model can reduce the cache data storage area up to 6% regardless of cache parameters. Also, our experiments on several embedded benchmarks demonstrate that dynamic cache energy consumption can be reduced up to 62% in a multiple-valued instruction cache in an embedded SoC.