A. Talai, Frank Steinhauser, U. Schmid, R. Weigel, A. Bittner, A. Koelpin
{"title":"一种基于介电常数梯度的有限三维场模拟方法在LTCC中实现了一种新的多孔化过程","authors":"A. Talai, Frank Steinhauser, U. Schmid, R. Weigel, A. Bittner, A. Koelpin","doi":"10.1109/MWSYM.2013.6697583","DOIUrl":null,"url":null,"abstract":"High frequency substrates show a manifold variety of complex permittivities for different applications. Recent research results demonstrated the possibility of local decrease of the permittivity on LTCC by chemical etching processes, which enables the design of high quality antennas on LTCC. This paper shows a novel approach on the determination of the quantitative reduction of the effective permittivity by scanning electron microscope analyses in combination with finite 3D field simulations of the resulting inhomogeneous material. By the characterization of two different porosified LTCCs it could be shown that this process is suitable for direct antenna integration on glass-ceramic substrates with enhanced values of relative permittivities.","PeriodicalId":128968,"journal":{"name":"2013 IEEE MTT-S International Microwave Symposium Digest (MTT)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"A finite 3D field simulation method for permittivity gradient implementation of a novel porosification process in LTCC\",\"authors\":\"A. Talai, Frank Steinhauser, U. Schmid, R. Weigel, A. Bittner, A. Koelpin\",\"doi\":\"10.1109/MWSYM.2013.6697583\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High frequency substrates show a manifold variety of complex permittivities for different applications. Recent research results demonstrated the possibility of local decrease of the permittivity on LTCC by chemical etching processes, which enables the design of high quality antennas on LTCC. This paper shows a novel approach on the determination of the quantitative reduction of the effective permittivity by scanning electron microscope analyses in combination with finite 3D field simulations of the resulting inhomogeneous material. By the characterization of two different porosified LTCCs it could be shown that this process is suitable for direct antenna integration on glass-ceramic substrates with enhanced values of relative permittivities.\",\"PeriodicalId\":128968,\"journal\":{\"name\":\"2013 IEEE MTT-S International Microwave Symposium Digest (MTT)\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE MTT-S International Microwave Symposium Digest (MTT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MWSYM.2013.6697583\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE MTT-S International Microwave Symposium Digest (MTT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSYM.2013.6697583","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A finite 3D field simulation method for permittivity gradient implementation of a novel porosification process in LTCC
High frequency substrates show a manifold variety of complex permittivities for different applications. Recent research results demonstrated the possibility of local decrease of the permittivity on LTCC by chemical etching processes, which enables the design of high quality antennas on LTCC. This paper shows a novel approach on the determination of the quantitative reduction of the effective permittivity by scanning electron microscope analyses in combination with finite 3D field simulations of the resulting inhomogeneous material. By the characterization of two different porosified LTCCs it could be shown that this process is suitable for direct antenna integration on glass-ceramic substrates with enhanced values of relative permittivities.