比较二进制编码检测器和基于约束的检测器的性能

Haiyu Hou, G. Dozier
{"title":"比较二进制编码检测器和基于约束的检测器的性能","authors":"Haiyu Hou, G. Dozier","doi":"10.1109/CEC.2004.1330937","DOIUrl":null,"url":null,"abstract":"Artificial immune systems can be used to detect intrusion by classifying network activities as normal or abnormal. High detection rates and low false positive rates are two necessary features of successful AIS. Strong detectors are the basis of creating a successful AIS. Some preliminary experiments showed its promise to encode detectors in the form of data triples. Currently, there are two types of detectors: binary-coded and constraint-based. This paper compares the two types of detectors using simulated network traffic data. The results show that constraint-based detectors perform better than binary-coded detectors.","PeriodicalId":152088,"journal":{"name":"Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Comparing performance of binary-coded detectors and constraint-based detectors\",\"authors\":\"Haiyu Hou, G. Dozier\",\"doi\":\"10.1109/CEC.2004.1330937\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Artificial immune systems can be used to detect intrusion by classifying network activities as normal or abnormal. High detection rates and low false positive rates are two necessary features of successful AIS. Strong detectors are the basis of creating a successful AIS. Some preliminary experiments showed its promise to encode detectors in the form of data triples. Currently, there are two types of detectors: binary-coded and constraint-based. This paper compares the two types of detectors using simulated network traffic data. The results show that constraint-based detectors perform better than binary-coded detectors.\",\"PeriodicalId\":152088,\"journal\":{\"name\":\"Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2004.1330937\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2004.1330937","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

人工免疫系统可以通过将网络活动分类为正常或异常来检测入侵。高检出率和低假阳性率是AIS成功的两个必要特征。强大的检测器是创建一个成功的AIS的基础。一些初步实验表明,它有望以数据三元组的形式对检测器进行编码。目前,有两种类型的检测器:二进制编码的和基于约束的。本文利用模拟的网络流量数据对两种类型的检测器进行了比较。结果表明,基于约束的检测器性能优于二进制编码检测器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparing performance of binary-coded detectors and constraint-based detectors
Artificial immune systems can be used to detect intrusion by classifying network activities as normal or abnormal. High detection rates and low false positive rates are two necessary features of successful AIS. Strong detectors are the basis of creating a successful AIS. Some preliminary experiments showed its promise to encode detectors in the form of data triples. Currently, there are two types of detectors: binary-coded and constraint-based. This paper compares the two types of detectors using simulated network traffic data. The results show that constraint-based detectors perform better than binary-coded detectors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信