基于GPU和CUDA的粒子梯度多目标进化算法

Xuezhi Yue, Zhijian Wu, Kangshun Li
{"title":"基于GPU和CUDA的粒子梯度多目标进化算法","authors":"Xuezhi Yue, Zhijian Wu, Kangshun Li","doi":"10.1109/ISISE.2010.136","DOIUrl":null,"url":null,"abstract":"In the paper, particle gradient multi-objective evolutionary algorithm (PGMOEA) on GPU is presented. PGMOEA extends the classical particle dynamic multi-objective evolutionary algorithm by incorporating the gradient information of each particle from evolutionary programming. We perform experiments to compare PGMOEA on GPU with PGMOEA on CPU and demonstrate that PGMOEA on GPU is much more effective and efficient than PGMOEA on CPU.","PeriodicalId":206833,"journal":{"name":"2010 Third International Symposium on Information Science and Engineering","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Particle Gradient Multi-objective Evolutionary Algorithm Based on GPU with CUDA\",\"authors\":\"Xuezhi Yue, Zhijian Wu, Kangshun Li\",\"doi\":\"10.1109/ISISE.2010.136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the paper, particle gradient multi-objective evolutionary algorithm (PGMOEA) on GPU is presented. PGMOEA extends the classical particle dynamic multi-objective evolutionary algorithm by incorporating the gradient information of each particle from evolutionary programming. We perform experiments to compare PGMOEA on GPU with PGMOEA on CPU and demonstrate that PGMOEA on GPU is much more effective and efficient than PGMOEA on CPU.\",\"PeriodicalId\":206833,\"journal\":{\"name\":\"2010 Third International Symposium on Information Science and Engineering\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Third International Symposium on Information Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISISE.2010.136\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Third International Symposium on Information Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISISE.2010.136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了基于GPU的粒子梯度多目标进化算法(PGMOEA)。PGMOEA在经典粒子动态多目标进化算法的基础上,引入了进化规划中每个粒子的梯度信息。我们通过实验对GPU上的PGMOEA和CPU上的PGMOEA进行了比较,结果表明GPU上的PGMOEA比CPU上的PGMOEA更加高效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Particle Gradient Multi-objective Evolutionary Algorithm Based on GPU with CUDA
In the paper, particle gradient multi-objective evolutionary algorithm (PGMOEA) on GPU is presented. PGMOEA extends the classical particle dynamic multi-objective evolutionary algorithm by incorporating the gradient information of each particle from evolutionary programming. We perform experiments to compare PGMOEA on GPU with PGMOEA on CPU and demonstrate that PGMOEA on GPU is much more effective and efficient than PGMOEA on CPU.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信