{"title":"决策感知元评论生成的深度神经体系结构","authors":"Asheesh Kumar, Tirthankar Ghosal, Asif Ekbal","doi":"10.1109/JCDL52503.2021.00064","DOIUrl":null,"url":null,"abstract":"Automatically generating meta-reviews from peer-reviews is a new and challenging task. Although close, the task is not precisely summarizing the peer-reviews. Usually, a conference chair or a journal editor writes a meta-review after going through the reviews written by the appointed reviewers, rounds of discussions with them, finally arriving at a consensus on the paper's fate. In essence, the meta-review texts are decision-aware, i.e., the meta reviewer already forms the decision before writing the meta-review, and the corresponding text conforms to that decision. We leverage this seed idea and design a deep neural architecture to generate decision-aware meta-reviews in this work. We propose a multi-encoder transformer network for peer-review decision prediction and subsequent meta-review generation. We analyze our output quantitatively and qualitatively and argue that quantitative text summarization metrics are not suitable for evaluating the generated meta-reviews. Our proposed model performs comparably with the recent state-of-the-art text summarization approaches. Qualitative evaluation of our model-generated output is encouraging on an open access peer reviews dataset that we curate from the open review platform. We make our data and codes available11https://www.iitp.ac.in/~ai-nlp-ml/resources.html# decision-aware-meta-review.","PeriodicalId":112400,"journal":{"name":"2021 ACM/IEEE Joint Conference on Digital Libraries (JCDL)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A Deep Neural Architecture for Decision-Aware Meta-Review Generation\",\"authors\":\"Asheesh Kumar, Tirthankar Ghosal, Asif Ekbal\",\"doi\":\"10.1109/JCDL52503.2021.00064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatically generating meta-reviews from peer-reviews is a new and challenging task. Although close, the task is not precisely summarizing the peer-reviews. Usually, a conference chair or a journal editor writes a meta-review after going through the reviews written by the appointed reviewers, rounds of discussions with them, finally arriving at a consensus on the paper's fate. In essence, the meta-review texts are decision-aware, i.e., the meta reviewer already forms the decision before writing the meta-review, and the corresponding text conforms to that decision. We leverage this seed idea and design a deep neural architecture to generate decision-aware meta-reviews in this work. We propose a multi-encoder transformer network for peer-review decision prediction and subsequent meta-review generation. We analyze our output quantitatively and qualitatively and argue that quantitative text summarization metrics are not suitable for evaluating the generated meta-reviews. Our proposed model performs comparably with the recent state-of-the-art text summarization approaches. Qualitative evaluation of our model-generated output is encouraging on an open access peer reviews dataset that we curate from the open review platform. We make our data and codes available11https://www.iitp.ac.in/~ai-nlp-ml/resources.html# decision-aware-meta-review.\",\"PeriodicalId\":112400,\"journal\":{\"name\":\"2021 ACM/IEEE Joint Conference on Digital Libraries (JCDL)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 ACM/IEEE Joint Conference on Digital Libraries (JCDL)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/JCDL52503.2021.00064\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 ACM/IEEE Joint Conference on Digital Libraries (JCDL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/JCDL52503.2021.00064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Deep Neural Architecture for Decision-Aware Meta-Review Generation
Automatically generating meta-reviews from peer-reviews is a new and challenging task. Although close, the task is not precisely summarizing the peer-reviews. Usually, a conference chair or a journal editor writes a meta-review after going through the reviews written by the appointed reviewers, rounds of discussions with them, finally arriving at a consensus on the paper's fate. In essence, the meta-review texts are decision-aware, i.e., the meta reviewer already forms the decision before writing the meta-review, and the corresponding text conforms to that decision. We leverage this seed idea and design a deep neural architecture to generate decision-aware meta-reviews in this work. We propose a multi-encoder transformer network for peer-review decision prediction and subsequent meta-review generation. We analyze our output quantitatively and qualitatively and argue that quantitative text summarization metrics are not suitable for evaluating the generated meta-reviews. Our proposed model performs comparably with the recent state-of-the-art text summarization approaches. Qualitative evaluation of our model-generated output is encouraging on an open access peer reviews dataset that we curate from the open review platform. We make our data and codes available11https://www.iitp.ac.in/~ai-nlp-ml/resources.html# decision-aware-meta-review.