从视频中学习和产生观众动作

Kenneth Chen, N. Badler
{"title":"从视频中学习和产生观众动作","authors":"Kenneth Chen, N. Badler","doi":"10.1145/3606037.3606839","DOIUrl":null,"url":null,"abstract":"There has recently been an explosion of interest in creating large-scale shared virtual spaces for multiplayer content. However, rendering player-controllable avatars in real-time creates latency issues when scaling to thousands of players. We introduce a human audience video dataset to support applications in deep learning-based 2D video audience simulation, bypassing the need for background 3D virtual humans. This dataset consists of YouTube videos that depict audiences with diverse lighting conditions, color, dress, and movement patterns. We describe the dataset statistics, our implicit data collection strategy, and audience video extraction pipeline. We apply deep learning tasks on this data based on video prediction techniques, and propose a novel method for 2D audience simulations.","PeriodicalId":191912,"journal":{"name":"Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards Learning and Generating Audience Motion from Video\",\"authors\":\"Kenneth Chen, N. Badler\",\"doi\":\"10.1145/3606037.3606839\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There has recently been an explosion of interest in creating large-scale shared virtual spaces for multiplayer content. However, rendering player-controllable avatars in real-time creates latency issues when scaling to thousands of players. We introduce a human audience video dataset to support applications in deep learning-based 2D video audience simulation, bypassing the need for background 3D virtual humans. This dataset consists of YouTube videos that depict audiences with diverse lighting conditions, color, dress, and movement patterns. We describe the dataset statistics, our implicit data collection strategy, and audience video extraction pipeline. We apply deep learning tasks on this data based on video prediction techniques, and propose a novel method for 2D audience simulations.\",\"PeriodicalId\":191912,\"journal\":{\"name\":\"Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3606037.3606839\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3606037.3606839","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最近,人们对为多人游戏内容创建大规模共享虚拟空间的兴趣激增。然而,实时渲染玩家可控制的角色在扩展到数千名玩家时会产生延迟问题。我们引入了一个人类观众视频数据集,以支持基于深度学习的2D视频观众模拟应用,绕过了对背景3D虚拟人的需求。该数据集由YouTube视频组成,这些视频描绘了不同照明条件、颜色、服装和运动模式的观众。我们描述了数据集统计、隐式数据收集策略和观众视频提取管道。我们将基于视频预测技术的深度学习任务应用于这些数据,并提出了一种新的2D观众模拟方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards Learning and Generating Audience Motion from Video
There has recently been an explosion of interest in creating large-scale shared virtual spaces for multiplayer content. However, rendering player-controllable avatars in real-time creates latency issues when scaling to thousands of players. We introduce a human audience video dataset to support applications in deep learning-based 2D video audience simulation, bypassing the need for background 3D virtual humans. This dataset consists of YouTube videos that depict audiences with diverse lighting conditions, color, dress, and movement patterns. We describe the dataset statistics, our implicit data collection strategy, and audience video extraction pipeline. We apply deep learning tasks on this data based on video prediction techniques, and propose a novel method for 2D audience simulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信