基于Bert算法的假新闻检测精度估计及与随机森林的比较

S. M, Kaliyamurthie K. P
{"title":"基于Bert算法的假新闻检测精度估计及与随机森林的比较","authors":"S. M, Kaliyamurthie K. P","doi":"10.1109/ICICICT54557.2022.9917629","DOIUrl":null,"url":null,"abstract":"This study aims to improve the prediction rate with a novel model of bidirectional encoder representation for transformers (BERT) compared with random forest algorithm. A dataset of size 1100 is used to compare Novel BERT's performance with Random Forests. With Random Forest, a framework for identifying fake news in electronic media networks is proposed. clinical calculates a sample size of 20 according to the framework. Regarding to Precision rate, the Novel Bert algorithm beats the Random Forest algorithm by 8.33%. In comparison to the random forest algorithm, BERT achieves a rate of 0.002 that is significantly better than it. It is concluded that the novel BERT algorithm outperforms Random Forest predicting of fake information in this study.","PeriodicalId":246214,"journal":{"name":"2022 Third International Conference on Intelligent Computing Instrumentation and Control Technologies (ICICICT)","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Estimation of Precision in Fake News Detection Using Novel Bert Algorithm and Comparison with Random Forest\",\"authors\":\"S. M, Kaliyamurthie K. P\",\"doi\":\"10.1109/ICICICT54557.2022.9917629\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study aims to improve the prediction rate with a novel model of bidirectional encoder representation for transformers (BERT) compared with random forest algorithm. A dataset of size 1100 is used to compare Novel BERT's performance with Random Forests. With Random Forest, a framework for identifying fake news in electronic media networks is proposed. clinical calculates a sample size of 20 according to the framework. Regarding to Precision rate, the Novel Bert algorithm beats the Random Forest algorithm by 8.33%. In comparison to the random forest algorithm, BERT achieves a rate of 0.002 that is significantly better than it. It is concluded that the novel BERT algorithm outperforms Random Forest predicting of fake information in this study.\",\"PeriodicalId\":246214,\"journal\":{\"name\":\"2022 Third International Conference on Intelligent Computing Instrumentation and Control Technologies (ICICICT)\",\"volume\":\"65 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Third International Conference on Intelligent Computing Instrumentation and Control Technologies (ICICICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICICT54557.2022.9917629\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Third International Conference on Intelligent Computing Instrumentation and Control Technologies (ICICICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICICT54557.2022.9917629","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

与随机森林算法相比,本文提出了一种新的变压器双向编码器表示模型(BERT),以提高预测率。使用大小为1100的数据集来比较Novel BERT与Random Forests的性能。利用随机森林,提出了一个识别电子媒体网络中假新闻的框架。临床根据该框架计算样本大小为20。在准确率方面,Novel Bert算法比Random Forest算法高出8.33%。与随机森林算法相比,BERT的准确率为0.002,明显优于随机森林算法。研究结果表明,BERT算法在虚假信息预测方面优于随机森林算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimation of Precision in Fake News Detection Using Novel Bert Algorithm and Comparison with Random Forest
This study aims to improve the prediction rate with a novel model of bidirectional encoder representation for transformers (BERT) compared with random forest algorithm. A dataset of size 1100 is used to compare Novel BERT's performance with Random Forests. With Random Forest, a framework for identifying fake news in electronic media networks is proposed. clinical calculates a sample size of 20 according to the framework. Regarding to Precision rate, the Novel Bert algorithm beats the Random Forest algorithm by 8.33%. In comparison to the random forest algorithm, BERT achieves a rate of 0.002 that is significantly better than it. It is concluded that the novel BERT algorithm outperforms Random Forest predicting of fake information in this study.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信