一种pca辅助EV-EGI方法配准体积数据集

Chun Dong, Timothy S Newman
{"title":"一种pca辅助EV-EGI方法配准体积数据集","authors":"Chun Dong, Timothy S Newman","doi":"10.1145/3517077.3517095","DOIUrl":null,"url":null,"abstract":"A method for volumetric dataset registration that utilizes principal component analysis (PCA) and volumetric extended Gaussian image (EGI)-based processing is presented. The method uses PCA to determine an initial coarse estimate of orientation difference between two volumetric datasets. The PCA is based on certain automatically selected (i.e., significant) voxels. The coarse estimate then is refined by a three-stage process that utilizes enhanced volumetric extended Gaussian images (EV-EGIs). These final EV-EGI stages also provide the translational component. The method's combination of steps allows for faster processing at roughly similar accuracy versus prior work based solely on EV-EGIs. Experimental comparisons with Globally optimal Iterative Closest Pointset (Go-ICP) registration are also reported and analyzed.","PeriodicalId":233686,"journal":{"name":"2022 7th International Conference on Multimedia and Image Processing","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A PCA-aided EV-EGI Method for Registering Volumetric Datasets\",\"authors\":\"Chun Dong, Timothy S Newman\",\"doi\":\"10.1145/3517077.3517095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A method for volumetric dataset registration that utilizes principal component analysis (PCA) and volumetric extended Gaussian image (EGI)-based processing is presented. The method uses PCA to determine an initial coarse estimate of orientation difference between two volumetric datasets. The PCA is based on certain automatically selected (i.e., significant) voxels. The coarse estimate then is refined by a three-stage process that utilizes enhanced volumetric extended Gaussian images (EV-EGIs). These final EV-EGI stages also provide the translational component. The method's combination of steps allows for faster processing at roughly similar accuracy versus prior work based solely on EV-EGIs. Experimental comparisons with Globally optimal Iterative Closest Pointset (Go-ICP) registration are also reported and analyzed.\",\"PeriodicalId\":233686,\"journal\":{\"name\":\"2022 7th International Conference on Multimedia and Image Processing\",\"volume\":\"62 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 7th International Conference on Multimedia and Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3517077.3517095\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 7th International Conference on Multimedia and Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3517077.3517095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种利用主成分分析(PCA)和基于体积扩展高斯图像(EGI)处理的体积数据集配准方法。该方法使用主成分分析法来确定两个体积数据集之间的方向差的初始粗略估计。PCA是基于某些自动选择的(即显著的)体素。然后通过利用增强体积扩展高斯图像(EV-EGIs)的三阶段过程对粗估计进行细化。这些最后的EV-EGI阶段也提供了转译组件。与之前仅基于EV-EGIs的工作相比,该方法的步骤组合允许以大致相似的精度更快地处理。本文还报道并分析了与全局最优迭代最近点集(Go-ICP)配准的实验比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A PCA-aided EV-EGI Method for Registering Volumetric Datasets
A method for volumetric dataset registration that utilizes principal component analysis (PCA) and volumetric extended Gaussian image (EGI)-based processing is presented. The method uses PCA to determine an initial coarse estimate of orientation difference between two volumetric datasets. The PCA is based on certain automatically selected (i.e., significant) voxels. The coarse estimate then is refined by a three-stage process that utilizes enhanced volumetric extended Gaussian images (EV-EGIs). These final EV-EGI stages also provide the translational component. The method's combination of steps allows for faster processing at roughly similar accuracy versus prior work based solely on EV-EGIs. Experimental comparisons with Globally optimal Iterative Closest Pointset (Go-ICP) registration are also reported and analyzed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信