基于实时特征的GPU加速算法

J. Ready, Clark N. Taylor
{"title":"基于实时特征的GPU加速算法","authors":"J. Ready, Clark N. Taylor","doi":"10.1109/WMVC.2007.17","DOIUrl":null,"url":null,"abstract":"Feature tracking is one of the most fundamental tasks in computer vision, being used as a preliminary step to many high-level algorithms. In general, however, the number of features tracked (leading to more accurate high-level algorithms) must be balanced against the computational requirements of the feature tracking algorithm. To enable a large number of features to be tracked in real time without degrading the computational performance of high-level computer vision algorithms, we offload the feature tracking algorithm to the the video card (GPU) found in modern personal computers. Using the GPU allows for tracking an order of magnitude more features than a pure software-based algorithm, with minimal increase in CPU usage. We have demonstrated the computational benefits of GPU-based feature tracking within a real-time video stabilization application.","PeriodicalId":177842,"journal":{"name":"2007 IEEE Workshop on Motion and Video Computing (WMVC'07)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"GPU Acceleration of Real-time Feature Based Algorithms\",\"authors\":\"J. Ready, Clark N. Taylor\",\"doi\":\"10.1109/WMVC.2007.17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Feature tracking is one of the most fundamental tasks in computer vision, being used as a preliminary step to many high-level algorithms. In general, however, the number of features tracked (leading to more accurate high-level algorithms) must be balanced against the computational requirements of the feature tracking algorithm. To enable a large number of features to be tracked in real time without degrading the computational performance of high-level computer vision algorithms, we offload the feature tracking algorithm to the the video card (GPU) found in modern personal computers. Using the GPU allows for tracking an order of magnitude more features than a pure software-based algorithm, with minimal increase in CPU usage. We have demonstrated the computational benefits of GPU-based feature tracking within a real-time video stabilization application.\",\"PeriodicalId\":177842,\"journal\":{\"name\":\"2007 IEEE Workshop on Motion and Video Computing (WMVC'07)\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE Workshop on Motion and Video Computing (WMVC'07)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WMVC.2007.17\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Workshop on Motion and Video Computing (WMVC'07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WMVC.2007.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

特征跟踪是计算机视觉中最基本的任务之一,被用作许多高级算法的初步步骤。然而,一般来说,跟踪的特征数量(导致更精确的高级算法)必须与特征跟踪算法的计算需求相平衡。为了在不降低高级计算机视觉算法的计算性能的情况下实时跟踪大量特征,我们将特征跟踪算法卸载到现代个人计算机中的显卡(GPU)上。使用GPU可以跟踪比纯基于软件的算法多一个数量级的特征,而CPU使用的增加最小。我们已经展示了基于gpu的特征跟踪在实时视频稳定应用程序中的计算优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GPU Acceleration of Real-time Feature Based Algorithms
Feature tracking is one of the most fundamental tasks in computer vision, being used as a preliminary step to many high-level algorithms. In general, however, the number of features tracked (leading to more accurate high-level algorithms) must be balanced against the computational requirements of the feature tracking algorithm. To enable a large number of features to be tracked in real time without degrading the computational performance of high-level computer vision algorithms, we offload the feature tracking algorithm to the the video card (GPU) found in modern personal computers. Using the GPU allows for tracking an order of magnitude more features than a pure software-based algorithm, with minimal increase in CPU usage. We have demonstrated the computational benefits of GPU-based feature tracking within a real-time video stabilization application.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信