基于能量函数法的时滞神经网络稳定性分析

Wenli Zhu, Jin Hu, Jie Zhang
{"title":"基于能量函数法的时滞神经网络稳定性分析","authors":"Wenli Zhu, Jin Hu, Jie Zhang","doi":"10.1109/ICNC.2011.6022078","DOIUrl":null,"url":null,"abstract":"In this paper, we improve the approach of energy functions on the stability analysis of neural networks with time delays. By means of coefficient variation as well as inequality analysis, a set of stability criteria for neural networks with time delays are given and the relationship between equilibrium points of the network and local minimum points of the energy function is discussed. As an application, we provide a neural network model that can be applied to calculate all the eigenvectors with respect to the maximum eigenvalue of a real symmetric matrix.","PeriodicalId":299503,"journal":{"name":"2011 Seventh International Conference on Natural Computation","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Stability analysis of neural networks with time delays via energy functions approach\",\"authors\":\"Wenli Zhu, Jin Hu, Jie Zhang\",\"doi\":\"10.1109/ICNC.2011.6022078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we improve the approach of energy functions on the stability analysis of neural networks with time delays. By means of coefficient variation as well as inequality analysis, a set of stability criteria for neural networks with time delays are given and the relationship between equilibrium points of the network and local minimum points of the energy function is discussed. As an application, we provide a neural network model that can be applied to calculate all the eigenvectors with respect to the maximum eigenvalue of a real symmetric matrix.\",\"PeriodicalId\":299503,\"journal\":{\"name\":\"2011 Seventh International Conference on Natural Computation\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 Seventh International Conference on Natural Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNC.2011.6022078\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Seventh International Conference on Natural Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2011.6022078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文改进了能量函数法在时滞神经网络稳定性分析中的应用。通过系数变分和不等式分析,给出了一类时滞神经网络的稳定性准则,并讨论了网络平衡点与能量函数局部极小点的关系。作为应用,我们提供了一个神经网络模型,该模型可用于计算实对称矩阵的最大特征值的所有特征向量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stability analysis of neural networks with time delays via energy functions approach
In this paper, we improve the approach of energy functions on the stability analysis of neural networks with time delays. By means of coefficient variation as well as inequality analysis, a set of stability criteria for neural networks with time delays are given and the relationship between equilibrium points of the network and local minimum points of the energy function is discussed. As an application, we provide a neural network model that can be applied to calculate all the eigenvectors with respect to the maximum eigenvalue of a real symmetric matrix.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信