使用不完整的审计数据检测拒绝服务攻击

A. Patcha, J. Park
{"title":"使用不完整的审计数据检测拒绝服务攻击","authors":"A. Patcha, J. Park","doi":"10.1109/ICCCN.2005.1523864","DOIUrl":null,"url":null,"abstract":"With the ever increasing deployment and usage of gigabit networks, traditional network anomaly detection based intrusion detection systems have not scaled accordingly. Most, if not all, systems deployed assume the availability of complete and clean data for the purpose of intrusion detection. We contend that this assumption is not valid. Factors like noise in the audit data, mobility of the nodes and the large amount of network data generated by the network make it difficult to build a normal traffic profile of the network for the purpose of anomaly detection. From this perspective, we present an anomaly detection scheme, called SCAN (stochastic clustering algorithm for network anomaly detection), that has the capability to detect intrusions with high accuracy even when audit data is not complete. We use the expectation-maximization algorithm to cluster the incoming audit data and compute the missing values in the audit data. We improve the speed of convergence of the clustering process by using Bloom filters and data summaries. We evaluate SCAN using the 1999 DARPA/Lincoln Laboratory intrusion detection evaluation dataset.","PeriodicalId":379037,"journal":{"name":"Proceedings. 14th International Conference on Computer Communications and Networks, 2005. ICCCN 2005.","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Detecting denial-of-service attacks with incomplete audit data\",\"authors\":\"A. Patcha, J. Park\",\"doi\":\"10.1109/ICCCN.2005.1523864\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the ever increasing deployment and usage of gigabit networks, traditional network anomaly detection based intrusion detection systems have not scaled accordingly. Most, if not all, systems deployed assume the availability of complete and clean data for the purpose of intrusion detection. We contend that this assumption is not valid. Factors like noise in the audit data, mobility of the nodes and the large amount of network data generated by the network make it difficult to build a normal traffic profile of the network for the purpose of anomaly detection. From this perspective, we present an anomaly detection scheme, called SCAN (stochastic clustering algorithm for network anomaly detection), that has the capability to detect intrusions with high accuracy even when audit data is not complete. We use the expectation-maximization algorithm to cluster the incoming audit data and compute the missing values in the audit data. We improve the speed of convergence of the clustering process by using Bloom filters and data summaries. We evaluate SCAN using the 1999 DARPA/Lincoln Laboratory intrusion detection evaluation dataset.\",\"PeriodicalId\":379037,\"journal\":{\"name\":\"Proceedings. 14th International Conference on Computer Communications and Networks, 2005. ICCCN 2005.\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. 14th International Conference on Computer Communications and Networks, 2005. ICCCN 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCCN.2005.1523864\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 14th International Conference on Computer Communications and Networks, 2005. ICCCN 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCN.2005.1523864","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

随着千兆网络部署和使用的不断增加,传统的基于网络异常检测的入侵检测系统已经无法进行相应的扩展。大多数(如果不是全部的话)部署的系统都假定有完整和干净的数据可用,以便进行入侵检测。我们认为这种假设是不成立的。由于审计数据中的噪声、节点的移动性以及网络产生的大量网络数据等因素,很难建立网络的正常流量概况来进行异常检测。从这个角度来看,我们提出了一种异常检测方案,称为SCAN(网络异常检测的随机聚类算法),即使在审计数据不完整的情况下,它也能够高精度地检测入侵。我们使用期望最大化算法对传入的审计数据进行聚类,并计算审计数据中的缺失值。我们通过使用Bloom过滤器和数据摘要来提高聚类过程的收敛速度。我们使用1999年DARPA/林肯实验室入侵检测评估数据集评估SCAN。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detecting denial-of-service attacks with incomplete audit data
With the ever increasing deployment and usage of gigabit networks, traditional network anomaly detection based intrusion detection systems have not scaled accordingly. Most, if not all, systems deployed assume the availability of complete and clean data for the purpose of intrusion detection. We contend that this assumption is not valid. Factors like noise in the audit data, mobility of the nodes and the large amount of network data generated by the network make it difficult to build a normal traffic profile of the network for the purpose of anomaly detection. From this perspective, we present an anomaly detection scheme, called SCAN (stochastic clustering algorithm for network anomaly detection), that has the capability to detect intrusions with high accuracy even when audit data is not complete. We use the expectation-maximization algorithm to cluster the incoming audit data and compute the missing values in the audit data. We improve the speed of convergence of the clustering process by using Bloom filters and data summaries. We evaluate SCAN using the 1999 DARPA/Lincoln Laboratory intrusion detection evaluation dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信