结构化协变量空间中的稀疏线性判别分析

S. Safo, Q. Long
{"title":"结构化协变量空间中的稀疏线性判别分析","authors":"S. Safo, Q. Long","doi":"10.1002/sam.11376","DOIUrl":null,"url":null,"abstract":"Classification with high dimensional variables is a popular goal in many modern statistical studies. Fisher's linear discriminant analysis (LDA) is a common and effective tool for classifying entities into existing groups. It is well known that classification using Fisher's discriminant for high dimensional data is as bad as random guessing due to the many noise features that increases misclassification rate. Recently, it is being acknowledged that complex biological mechanisms occur through multiple features working together, though individually these features may contribute to noise accumulation in the data. In view of these, it is important to perform classification with discriminant vectors that use a subset of important variables, while also utilizing prior biological relationships among features. We tackle this problem in this article and propose methods that incorporate variable selection into the classification problem, for the identification of important biomarkers. Furthermore, we incorporate into the LDA problem prior information on the relationships among variables using undirected graphs in order to identify functionally meaningful biomarkers. We compare our methods to existing sparse LDA approaches via simulation studies and real data analysis.","PeriodicalId":193885,"journal":{"name":"2016 IEEE International Conference on Data Science and Advanced Analytics (DSAA)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Sparse Linear Discriminant Analysis in Structured Covariates Space\",\"authors\":\"S. Safo, Q. Long\",\"doi\":\"10.1002/sam.11376\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Classification with high dimensional variables is a popular goal in many modern statistical studies. Fisher's linear discriminant analysis (LDA) is a common and effective tool for classifying entities into existing groups. It is well known that classification using Fisher's discriminant for high dimensional data is as bad as random guessing due to the many noise features that increases misclassification rate. Recently, it is being acknowledged that complex biological mechanisms occur through multiple features working together, though individually these features may contribute to noise accumulation in the data. In view of these, it is important to perform classification with discriminant vectors that use a subset of important variables, while also utilizing prior biological relationships among features. We tackle this problem in this article and propose methods that incorporate variable selection into the classification problem, for the identification of important biomarkers. Furthermore, we incorporate into the LDA problem prior information on the relationships among variables using undirected graphs in order to identify functionally meaningful biomarkers. We compare our methods to existing sparse LDA approaches via simulation studies and real data analysis.\",\"PeriodicalId\":193885,\"journal\":{\"name\":\"2016 IEEE International Conference on Data Science and Advanced Analytics (DSAA)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Data Science and Advanced Analytics (DSAA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/sam.11376\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Data Science and Advanced Analytics (DSAA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/sam.11376","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在许多现代统计研究中,高维变量分类是一个流行的目标。Fisher的线性判别分析(LDA)是一种将实体划分为现有群体的常用而有效的工具。众所周知,使用Fisher判别法对高维数据进行分类与随机猜测一样糟糕,因为许多噪声特征增加了误分类率。最近,人们认识到复杂的生物机制是通过多个特征共同作用而发生的,尽管这些特征单独可能会导致数据中的噪声积累。鉴于此,重要的是使用使用重要变量子集的判别向量进行分类,同时也利用特征之间的先验生物学关系。我们在本文中解决了这个问题,并提出了将变量选择纳入分类问题的方法,以识别重要的生物标志物。此外,我们使用无向图将变量之间关系的先验信息纳入LDA问题,以识别功能上有意义的生物标志物。通过仿真研究和实际数据分析,将我们的方法与现有的稀疏LDA方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sparse Linear Discriminant Analysis in Structured Covariates Space
Classification with high dimensional variables is a popular goal in many modern statistical studies. Fisher's linear discriminant analysis (LDA) is a common and effective tool for classifying entities into existing groups. It is well known that classification using Fisher's discriminant for high dimensional data is as bad as random guessing due to the many noise features that increases misclassification rate. Recently, it is being acknowledged that complex biological mechanisms occur through multiple features working together, though individually these features may contribute to noise accumulation in the data. In view of these, it is important to perform classification with discriminant vectors that use a subset of important variables, while also utilizing prior biological relationships among features. We tackle this problem in this article and propose methods that incorporate variable selection into the classification problem, for the identification of important biomarkers. Furthermore, we incorporate into the LDA problem prior information on the relationships among variables using undirected graphs in order to identify functionally meaningful biomarkers. We compare our methods to existing sparse LDA approaches via simulation studies and real data analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信