基于gpu的图像分割k均值聚类算法并行实现

Shruti Karbhari, Shadi G. Alawneh
{"title":"基于gpu的图像分割k均值聚类算法并行实现","authors":"Shruti Karbhari, Shadi G. Alawneh","doi":"10.1109/EIT.2018.8500282","DOIUrl":null,"url":null,"abstract":"Clustering algorithms group a dataset into clusters that have common features. Clustering has applications in computer vision, data mining, market segmentation etc. The k-means clustering algorithm is one of the most popular algorithms where the mean is used as a prototype of the cluster. In this paper, we explore accelerating the performance of k-means clustering using NVIDIA Graphics Processing Units (GPUs) programmed with CUDA C. Different optimization techniques are applied such as the use of shared memory for image data and the use of constant memory for cluster data. The performance results are evaluated on a range of images from small ($256\\times 256$ pixels) to large ($1024\\times 1024$ pixels) and number of clusters range from 4 to 256. We find that on an average, the parallel implementation has a 9x speed up as compared to the sequential version for 4 clusters. The speedup increases to 57x as number of clusters increase to 256. This implementation also performs better than a reference implementation from Northwestern University/UC Berkeley.","PeriodicalId":188414,"journal":{"name":"2018 IEEE International Conference on Electro/Information Technology (EIT)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"GPU-Based Parallel Implementation of K-Means Clustering Algorithm for Image Segmentation\",\"authors\":\"Shruti Karbhari, Shadi G. Alawneh\",\"doi\":\"10.1109/EIT.2018.8500282\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Clustering algorithms group a dataset into clusters that have common features. Clustering has applications in computer vision, data mining, market segmentation etc. The k-means clustering algorithm is one of the most popular algorithms where the mean is used as a prototype of the cluster. In this paper, we explore accelerating the performance of k-means clustering using NVIDIA Graphics Processing Units (GPUs) programmed with CUDA C. Different optimization techniques are applied such as the use of shared memory for image data and the use of constant memory for cluster data. The performance results are evaluated on a range of images from small ($256\\\\times 256$ pixels) to large ($1024\\\\times 1024$ pixels) and number of clusters range from 4 to 256. We find that on an average, the parallel implementation has a 9x speed up as compared to the sequential version for 4 clusters. The speedup increases to 57x as number of clusters increase to 256. This implementation also performs better than a reference implementation from Northwestern University/UC Berkeley.\",\"PeriodicalId\":188414,\"journal\":{\"name\":\"2018 IEEE International Conference on Electro/Information Technology (EIT)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Electro/Information Technology (EIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EIT.2018.8500282\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Electro/Information Technology (EIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EIT.2018.8500282","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

聚类算法将数据集分组到具有共同特征的聚类中。聚类在计算机视觉、数据挖掘、市场细分等领域都有应用。k-means聚类算法是最流行的算法之一,它使用均值作为聚类的原型。在本文中,我们探索了使用CUDA c编程的NVIDIA图形处理单元(gpu)加速k-means聚类的性能。应用了不同的优化技术,例如使用图像数据的共享内存和使用集群数据的恒定内存。性能结果在从小($256\乘以256$像素)到大($1024\乘以1024$像素)的图像范围内进行评估,集群的数量范围从4到256。我们发现,平均而言,与4个集群的顺序版本相比,并行实现的速度提高了9倍。当集群数量增加到256个时,加速增加到57倍。该实现也比西北大学/加州大学伯克利分校的参考实现性能更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GPU-Based Parallel Implementation of K-Means Clustering Algorithm for Image Segmentation
Clustering algorithms group a dataset into clusters that have common features. Clustering has applications in computer vision, data mining, market segmentation etc. The k-means clustering algorithm is one of the most popular algorithms where the mean is used as a prototype of the cluster. In this paper, we explore accelerating the performance of k-means clustering using NVIDIA Graphics Processing Units (GPUs) programmed with CUDA C. Different optimization techniques are applied such as the use of shared memory for image data and the use of constant memory for cluster data. The performance results are evaluated on a range of images from small ($256\times 256$ pixels) to large ($1024\times 1024$ pixels) and number of clusters range from 4 to 256. We find that on an average, the parallel implementation has a 9x speed up as compared to the sequential version for 4 clusters. The speedup increases to 57x as number of clusters increase to 256. This implementation also performs better than a reference implementation from Northwestern University/UC Berkeley.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信