基于焓的泵送两相冷却系统模型

Leitao Chen, Fanghao Yang, P. Parida, M. Schultz, T. Chainer
{"title":"基于焓的泵送两相冷却系统模型","authors":"Leitao Chen, Fanghao Yang, P. Parida, M. Schultz, T. Chainer","doi":"10.1109/ITHERM.2016.7517629","DOIUrl":null,"url":null,"abstract":"The development of embedded chip cooling for 2D and 3D integrated circuits using pumped dielectric refrigerant has gained recent attention due to the ability to manage high heat densities and compatibility with electronics. Recent studies have focused on in-situ thermal and hydrodynamic phenomena (e.g. boiling and bubble dynamics) of two-phase flow boiling at micro-scales. In this paper we focus on the two-phase cooling system design including the cooling capability, size and coefficient of performance (COP). In implementing a two-phase cooling, a system-level computational model for two-phase cooling systems becomes necessary. Therefore, a computationally manageable and accurate one dimensional (1D) system model is described. Furthermore, the model can be easily customized for different two-phase cooling system configurations. By validating the model with experimental data from a two-phase cooling system, it is shown that model can generate accurate results, and therefore, can be used as a tool to study and predict the characteristics and performance of a pumped two-phase cooling systems.","PeriodicalId":426908,"journal":{"name":"2016 15th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enthalpy-based system-model for pumped two-phase cooling systems\",\"authors\":\"Leitao Chen, Fanghao Yang, P. Parida, M. Schultz, T. Chainer\",\"doi\":\"10.1109/ITHERM.2016.7517629\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The development of embedded chip cooling for 2D and 3D integrated circuits using pumped dielectric refrigerant has gained recent attention due to the ability to manage high heat densities and compatibility with electronics. Recent studies have focused on in-situ thermal and hydrodynamic phenomena (e.g. boiling and bubble dynamics) of two-phase flow boiling at micro-scales. In this paper we focus on the two-phase cooling system design including the cooling capability, size and coefficient of performance (COP). In implementing a two-phase cooling, a system-level computational model for two-phase cooling systems becomes necessary. Therefore, a computationally manageable and accurate one dimensional (1D) system model is described. Furthermore, the model can be easily customized for different two-phase cooling system configurations. By validating the model with experimental data from a two-phase cooling system, it is shown that model can generate accurate results, and therefore, can be used as a tool to study and predict the characteristics and performance of a pumped two-phase cooling systems.\",\"PeriodicalId\":426908,\"journal\":{\"name\":\"2016 15th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 15th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITHERM.2016.7517629\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 15th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITHERM.2016.7517629","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于能够管理高热密度和与电子设备的兼容性,使用泵浦介质制冷剂的2D和3D集成电路的嵌入式芯片冷却的发展最近受到了关注。近年来的研究主要集中在微观尺度下两相流沸腾的原位热动力学和水动力现象(如沸腾和气泡动力学)。本文重点介绍了两相冷却系统的设计,包括冷却能力、冷却尺寸和性能系数(COP)。在实现两相冷却时,两相冷却系统的系统级计算模型是必要的。因此,描述了一个计算可管理和精确的一维(1D)系统模型。此外,该模型可以很容易地定制不同的两相冷却系统配置。用两相冷却系统的实验数据对模型进行验证,结果表明,该模型可以得到准确的结果,因此,可以作为研究和预测泵送两相冷却系统特性和性能的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enthalpy-based system-model for pumped two-phase cooling systems
The development of embedded chip cooling for 2D and 3D integrated circuits using pumped dielectric refrigerant has gained recent attention due to the ability to manage high heat densities and compatibility with electronics. Recent studies have focused on in-situ thermal and hydrodynamic phenomena (e.g. boiling and bubble dynamics) of two-phase flow boiling at micro-scales. In this paper we focus on the two-phase cooling system design including the cooling capability, size and coefficient of performance (COP). In implementing a two-phase cooling, a system-level computational model for two-phase cooling systems becomes necessary. Therefore, a computationally manageable and accurate one dimensional (1D) system model is described. Furthermore, the model can be easily customized for different two-phase cooling system configurations. By validating the model with experimental data from a two-phase cooling system, it is shown that model can generate accurate results, and therefore, can be used as a tool to study and predict the characteristics and performance of a pumped two-phase cooling systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信