无线电发射机指纹识别系统ODO-1

J. Toonstra, Witold Kinsner
{"title":"无线电发射机指纹识别系统ODO-1","authors":"J. Toonstra, Witold Kinsner","doi":"10.1109/CCECE.1996.548038","DOIUrl":null,"url":null,"abstract":"This paper presents a new method for the capture, analysis, and classification of radio transmitter transients. This method involves the use of a capturing subsystem consisting of an Icom IC-R7000 communications receiver and a Sound Blaster 16 sound card running on a PC. The radio transients are sampled at 44,100 samples per second and have 16 bits accuracy. Once the transmitter transient has been captured, a genetic algorithm selects the critical features from the wavelet coefficients for classification. The selected wavelet coefficients are considered to be fingerprints, and are presented to a back propagation neural network for transmitter classification. The capturing and analysis system, ODO-1, is able to classify both transients of the same model type as well as individual transmitters with 100% accuracy on a small data base of transmitter fingerprints.","PeriodicalId":269440,"journal":{"name":"Proceedings of 1996 Canadian Conference on Electrical and Computer Engineering","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"98","resultStr":"{\"title\":\"A radio transmitter fingerprinting system ODO-1\",\"authors\":\"J. Toonstra, Witold Kinsner\",\"doi\":\"10.1109/CCECE.1996.548038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new method for the capture, analysis, and classification of radio transmitter transients. This method involves the use of a capturing subsystem consisting of an Icom IC-R7000 communications receiver and a Sound Blaster 16 sound card running on a PC. The radio transients are sampled at 44,100 samples per second and have 16 bits accuracy. Once the transmitter transient has been captured, a genetic algorithm selects the critical features from the wavelet coefficients for classification. The selected wavelet coefficients are considered to be fingerprints, and are presented to a back propagation neural network for transmitter classification. The capturing and analysis system, ODO-1, is able to classify both transients of the same model type as well as individual transmitters with 100% accuracy on a small data base of transmitter fingerprints.\",\"PeriodicalId\":269440,\"journal\":{\"name\":\"Proceedings of 1996 Canadian Conference on Electrical and Computer Engineering\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"98\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 1996 Canadian Conference on Electrical and Computer Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCECE.1996.548038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1996 Canadian Conference on Electrical and Computer Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCECE.1996.548038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 98

摘要

本文提出了一种捕获、分析和分类无线电发射机瞬态信号的新方法。这种方法涉及使用由Icom IC-R7000通信接收器和运行在PC上的Sound Blaster 16声卡组成的捕获子系统。无线电瞬变以每秒44,100个样本采样,具有16位精度。一旦捕获了发射机瞬态信号,遗传算法从小波系数中选择关键特征进行分类。选取的小波系数被认为是指纹,并将其提交给反向传播神经网络进行分类。捕获和分析系统ODO-1能够在发射器指纹的小型数据库上以100%的准确率对同一型号类型的瞬变以及单个发射器进行分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A radio transmitter fingerprinting system ODO-1
This paper presents a new method for the capture, analysis, and classification of radio transmitter transients. This method involves the use of a capturing subsystem consisting of an Icom IC-R7000 communications receiver and a Sound Blaster 16 sound card running on a PC. The radio transients are sampled at 44,100 samples per second and have 16 bits accuracy. Once the transmitter transient has been captured, a genetic algorithm selects the critical features from the wavelet coefficients for classification. The selected wavelet coefficients are considered to be fingerprints, and are presented to a back propagation neural network for transmitter classification. The capturing and analysis system, ODO-1, is able to classify both transients of the same model type as well as individual transmitters with 100% accuracy on a small data base of transmitter fingerprints.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信