SIMD网格处理器的高效组件标记

Whanki Yong, M. Brady
{"title":"SIMD网格处理器的高效组件标记","authors":"Whanki Yong, M. Brady","doi":"10.1109/ICPP.1994.99","DOIUrl":null,"url":null,"abstract":"A new component labeling algorithm for SIMD meshes is presented whose time complexity is O(frac{{n^2 }} {{p^2 }} + n) for an n ¿ n image on a p ¿ p mesh. The algorithm is efficient in terms of total work for p leqslant n^{frac{1} {2}} . It was evaluated on a MasPar MP-1 with 1K processors and 64KB of memory per processor. For most of the 1K ¿ 1K size test inputs, our algorithm is faster than a neighbor updating algorithm that is extremely simple but asymptotically slower on images of large diameter.","PeriodicalId":162043,"journal":{"name":"1994 International Conference on Parallel Processing Vol. 3","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Efficient Component Labeling on SIMD Mesh Processors\",\"authors\":\"Whanki Yong, M. Brady\",\"doi\":\"10.1109/ICPP.1994.99\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new component labeling algorithm for SIMD meshes is presented whose time complexity is O(frac{{n^2 }} {{p^2 }} + n) for an n ¿ n image on a p ¿ p mesh. The algorithm is efficient in terms of total work for p leqslant n^{frac{1} {2}} . It was evaluated on a MasPar MP-1 with 1K processors and 64KB of memory per processor. For most of the 1K ¿ 1K size test inputs, our algorithm is faster than a neighbor updating algorithm that is extremely simple but asymptotically slower on images of large diameter.\",\"PeriodicalId\":162043,\"journal\":{\"name\":\"1994 International Conference on Parallel Processing Vol. 3\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1994 International Conference on Parallel Processing Vol. 3\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPP.1994.99\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1994 International Conference on Parallel Processing Vol. 3","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPP.1994.99","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种新的SIMD网格分量标注算法,其时间复杂度为0 (frac{{n^2}} {{p^2}} + n),适用于p^ p网格上的n^ n图像。该算法在p的总工作量方面是有效的n^{frac{1}{2}}。它是在具有1K处理器和每个处理器64KB内存的MasPar MP-1上进行评估的。对于大多数1K ~ 1K大小的测试输入,我们的算法比邻居更新算法快,邻居更新算法非常简单,但在大直径图像上渐近变慢。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient Component Labeling on SIMD Mesh Processors
A new component labeling algorithm for SIMD meshes is presented whose time complexity is O(frac{{n^2 }} {{p^2 }} + n) for an n ¿ n image on a p ¿ p mesh. The algorithm is efficient in terms of total work for p leqslant n^{frac{1} {2}} . It was evaluated on a MasPar MP-1 with 1K processors and 64KB of memory per processor. For most of the 1K ¿ 1K size test inputs, our algorithm is faster than a neighbor updating algorithm that is extremely simple but asymptotically slower on images of large diameter.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信