比较R平方

Min S. Kim
{"title":"比较R平方","authors":"Min S. Kim","doi":"10.2139/ssrn.3790200","DOIUrl":null,"url":null,"abstract":"This paper proposes a simple statistic for testing statistical significance of R squared. This statistic, called \"comparative R squared,\" also tests statistical significance of the difference of R squared between null and alternative models with additional explanatory variables. The asymptotic distribution of the test statistic is a chi square distribution with the degree of freedom equal to the number of (additional) explanatory variables. Unlike the F test, this statistic is useful when dealing with non-normality. Simulations show that the test statistic behaves well and has no distortion of size, even in small samples.","PeriodicalId":260073,"journal":{"name":"Mathematics eJournal","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Comparative R Squared\",\"authors\":\"Min S. Kim\",\"doi\":\"10.2139/ssrn.3790200\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a simple statistic for testing statistical significance of R squared. This statistic, called \\\"comparative R squared,\\\" also tests statistical significance of the difference of R squared between null and alternative models with additional explanatory variables. The asymptotic distribution of the test statistic is a chi square distribution with the degree of freedom equal to the number of (additional) explanatory variables. Unlike the F test, this statistic is useful when dealing with non-normality. Simulations show that the test statistic behaves well and has no distortion of size, even in small samples.\",\"PeriodicalId\":260073,\"journal\":{\"name\":\"Mathematics eJournal\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3790200\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3790200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文提出了一种检验R平方统计显著性的简单统计量。该统计数据称为“比较R平方”,还测试了具有附加解释变量的零模型和替代模型之间R平方差异的统计显著性。检验统计量的渐近分布是卡方分布,其自由度等于(附加)解释变量的数量。与F检验不同,这个统计量在处理非正态性时很有用。仿真结果表明,即使在小样本中,测试统计量也表现良好,没有尺寸失真。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparative R Squared
This paper proposes a simple statistic for testing statistical significance of R squared. This statistic, called "comparative R squared," also tests statistical significance of the difference of R squared between null and alternative models with additional explanatory variables. The asymptotic distribution of the test statistic is a chi square distribution with the degree of freedom equal to the number of (additional) explanatory variables. Unlike the F test, this statistic is useful when dealing with non-normality. Simulations show that the test statistic behaves well and has no distortion of size, even in small samples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信