一种具有相对距离的多目标遗传算法:方法、性能度量和约束处理

P. Tripathi, S. Bandyopadhyay, S. Pal
{"title":"一种具有相对距离的多目标遗传算法:方法、性能度量和约束处理","authors":"P. Tripathi, S. Bandyopadhyay, S. Pal","doi":"10.1109/ICCTA.2007.13","DOIUrl":null,"url":null,"abstract":"A novel multi-objective evolutionary algorithm (MOEA), called multi-objective genetic algorithm with relative distance (MOGARD) is described. A novel relative distance parameter that ensures convergence to the Pareto optimal front and a nearest neighbour based method for maintaining diversity in the non-dominated set is used. Two novel performance measures are formulated to estimate the performance of the MOEAs. A penalty based constraint handling concept is introduced in MOGARD, for handling constraints. Experimental results demonstrate the superiority of MOGARD on several test problems, as compared to other recent and well known algorithms","PeriodicalId":308247,"journal":{"name":"2007 International Conference on Computing: Theory and Applications (ICCTA'07)","volume":"729 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Multi-objective Genetic Algorithm with Relative Distance: Method, Performance Measures and Constraint Handling\",\"authors\":\"P. Tripathi, S. Bandyopadhyay, S. Pal\",\"doi\":\"10.1109/ICCTA.2007.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel multi-objective evolutionary algorithm (MOEA), called multi-objective genetic algorithm with relative distance (MOGARD) is described. A novel relative distance parameter that ensures convergence to the Pareto optimal front and a nearest neighbour based method for maintaining diversity in the non-dominated set is used. Two novel performance measures are formulated to estimate the performance of the MOEAs. A penalty based constraint handling concept is introduced in MOGARD, for handling constraints. Experimental results demonstrate the superiority of MOGARD on several test problems, as compared to other recent and well known algorithms\",\"PeriodicalId\":308247,\"journal\":{\"name\":\"2007 International Conference on Computing: Theory and Applications (ICCTA'07)\",\"volume\":\"729 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 International Conference on Computing: Theory and Applications (ICCTA'07)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCTA.2007.13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Conference on Computing: Theory and Applications (ICCTA'07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCTA.2007.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种新的多目标进化算法——相对距离多目标遗传算法(MOGARD)。采用了一种新颖的相对距离参数来保证收敛到Pareto最优前沿,并采用了一种基于最近邻的方法来保持非支配集中的多样性。提出了两种新的性能指标来评估moea的性能。在MOGARD中引入了基于惩罚的约束处理概念,用于处理约束。实验结果表明,与其他最新和已知的算法相比,MOGARD在几个测试问题上具有优越性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Multi-objective Genetic Algorithm with Relative Distance: Method, Performance Measures and Constraint Handling
A novel multi-objective evolutionary algorithm (MOEA), called multi-objective genetic algorithm with relative distance (MOGARD) is described. A novel relative distance parameter that ensures convergence to the Pareto optimal front and a nearest neighbour based method for maintaining diversity in the non-dominated set is used. Two novel performance measures are formulated to estimate the performance of the MOEAs. A penalty based constraint handling concept is introduced in MOGARD, for handling constraints. Experimental results demonstrate the superiority of MOGARD on several test problems, as compared to other recent and well known algorithms
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信