{"title":"眼动追踪数据与生理信号的比较,用于估计理解水平","authors":"Masaki Omata, Masaya Iuchi, Megumi Sakiyama","doi":"10.1145/3292147.3292233","DOIUrl":null,"url":null,"abstract":"We propose an e-learning content recommendation system that estimates a learner's level of understanding of a second language sentence. The system analyzes the eye-tracking data of a learner reading a text, and automatically selects the next text based on the estimation. This paper describes the system design and experimentally compares the estimation accuracies of two estimation methods (multiple regression and a neural network) and two kinds of learner-response data (eye-tracking data alone and both eye-tracking data and physiological signals). The neural network achieved higher accuracy than multiple regression, and eye-tracking data alone yielded the same or higher accuracy than the combined eye-tracking and physiological data. The average accuracy rate of the neural network using eye-tracking data was 67.86%.1","PeriodicalId":309502,"journal":{"name":"Proceedings of the 30th Australian Conference on Computer-Human Interaction","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Comparison of eye-tracking data with physiological signals for estimating level of understanding\",\"authors\":\"Masaki Omata, Masaya Iuchi, Megumi Sakiyama\",\"doi\":\"10.1145/3292147.3292233\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose an e-learning content recommendation system that estimates a learner's level of understanding of a second language sentence. The system analyzes the eye-tracking data of a learner reading a text, and automatically selects the next text based on the estimation. This paper describes the system design and experimentally compares the estimation accuracies of two estimation methods (multiple regression and a neural network) and two kinds of learner-response data (eye-tracking data alone and both eye-tracking data and physiological signals). The neural network achieved higher accuracy than multiple regression, and eye-tracking data alone yielded the same or higher accuracy than the combined eye-tracking and physiological data. The average accuracy rate of the neural network using eye-tracking data was 67.86%.1\",\"PeriodicalId\":309502,\"journal\":{\"name\":\"Proceedings of the 30th Australian Conference on Computer-Human Interaction\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 30th Australian Conference on Computer-Human Interaction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3292147.3292233\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 30th Australian Conference on Computer-Human Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3292147.3292233","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Comparison of eye-tracking data with physiological signals for estimating level of understanding
We propose an e-learning content recommendation system that estimates a learner's level of understanding of a second language sentence. The system analyzes the eye-tracking data of a learner reading a text, and automatically selects the next text based on the estimation. This paper describes the system design and experimentally compares the estimation accuracies of two estimation methods (multiple regression and a neural network) and two kinds of learner-response data (eye-tracking data alone and both eye-tracking data and physiological signals). The neural network achieved higher accuracy than multiple regression, and eye-tracking data alone yielded the same or higher accuracy than the combined eye-tracking and physiological data. The average accuracy rate of the neural network using eye-tracking data was 67.86%.1