眼动追踪数据与生理信号的比较,用于估计理解水平

Masaki Omata, Masaya Iuchi, Megumi Sakiyama
{"title":"眼动追踪数据与生理信号的比较,用于估计理解水平","authors":"Masaki Omata, Masaya Iuchi, Megumi Sakiyama","doi":"10.1145/3292147.3292233","DOIUrl":null,"url":null,"abstract":"We propose an e-learning content recommendation system that estimates a learner's level of understanding of a second language sentence. The system analyzes the eye-tracking data of a learner reading a text, and automatically selects the next text based on the estimation. This paper describes the system design and experimentally compares the estimation accuracies of two estimation methods (multiple regression and a neural network) and two kinds of learner-response data (eye-tracking data alone and both eye-tracking data and physiological signals). The neural network achieved higher accuracy than multiple regression, and eye-tracking data alone yielded the same or higher accuracy than the combined eye-tracking and physiological data. The average accuracy rate of the neural network using eye-tracking data was 67.86%.1","PeriodicalId":309502,"journal":{"name":"Proceedings of the 30th Australian Conference on Computer-Human Interaction","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Comparison of eye-tracking data with physiological signals for estimating level of understanding\",\"authors\":\"Masaki Omata, Masaya Iuchi, Megumi Sakiyama\",\"doi\":\"10.1145/3292147.3292233\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose an e-learning content recommendation system that estimates a learner's level of understanding of a second language sentence. The system analyzes the eye-tracking data of a learner reading a text, and automatically selects the next text based on the estimation. This paper describes the system design and experimentally compares the estimation accuracies of two estimation methods (multiple regression and a neural network) and two kinds of learner-response data (eye-tracking data alone and both eye-tracking data and physiological signals). The neural network achieved higher accuracy than multiple regression, and eye-tracking data alone yielded the same or higher accuracy than the combined eye-tracking and physiological data. The average accuracy rate of the neural network using eye-tracking data was 67.86%.1\",\"PeriodicalId\":309502,\"journal\":{\"name\":\"Proceedings of the 30th Australian Conference on Computer-Human Interaction\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 30th Australian Conference on Computer-Human Interaction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3292147.3292233\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 30th Australian Conference on Computer-Human Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3292147.3292233","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们提出了一个电子学习内容推荐系统,它可以估计学习者对第二语言句子的理解水平。该系统分析学习者阅读文本时的眼动数据,并在此基础上自动选择下一个文本。本文介绍了系统设计,并实验比较了两种估计方法(多元回归和神经网络)和两种学习者-反应数据(单独眼动数据和同时眼动数据和生理信号)的估计精度。神经网络的准确率高于多元回归,单独的眼动追踪数据的准确率与眼动追踪和生理数据相结合的准确率相同或更高。使用眼动追踪数据的神经网络平均准确率为67.86% 1
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparison of eye-tracking data with physiological signals for estimating level of understanding
We propose an e-learning content recommendation system that estimates a learner's level of understanding of a second language sentence. The system analyzes the eye-tracking data of a learner reading a text, and automatically selects the next text based on the estimation. This paper describes the system design and experimentally compares the estimation accuracies of two estimation methods (multiple regression and a neural network) and two kinds of learner-response data (eye-tracking data alone and both eye-tracking data and physiological signals). The neural network achieved higher accuracy than multiple regression, and eye-tracking data alone yielded the same or higher accuracy than the combined eye-tracking and physiological data. The average accuracy rate of the neural network using eye-tracking data was 67.86%.1
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信