InP场效应管绝缘钝化栅技术的研究

W. Lee, A. Iliadis, E. Martín, M. Mattingley, O. Aina
{"title":"InP场效应管绝缘钝化栅技术的研究","authors":"W. Lee, A. Iliadis, E. Martín, M. Mattingley, O. Aina","doi":"10.1109/ICIPRM.1990.203032","DOIUrl":null,"url":null,"abstract":"The effects of using a new surface passivation technique prior to PECVD SiO/sub 2/ deposition were studied, and the performance of the devices was correlated with the state of the interface at the gate electrode. Devices with gates made using the passivation only, passivation and subsequent SiO/sub 2/ deposition, and SiO/sub 2/ deposition without passivation were studied for a uniformly doped n-channel InP FET. The unpassivated SiO/sub 2/ insulated gates produced the lowest transconductance (g/sub m/) values: passivation prior to SiO/sub 2/ deposition improved the characteristics of the devices and increased g/sub m/ significantly. The passivated enhanced barrier gates produced the best characteristics and the highest transconductances consistently. In general the enhanced barrier gates demonstrated twice as high transconductance values as the SiO/sub 2/ insulated gates.<<ETX>>","PeriodicalId":138960,"journal":{"name":"International Conference on Indium Phosphide and Related Materials","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A study of insulated and passivated gate technology for InP FETs\",\"authors\":\"W. Lee, A. Iliadis, E. Martín, M. Mattingley, O. Aina\",\"doi\":\"10.1109/ICIPRM.1990.203032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The effects of using a new surface passivation technique prior to PECVD SiO/sub 2/ deposition were studied, and the performance of the devices was correlated with the state of the interface at the gate electrode. Devices with gates made using the passivation only, passivation and subsequent SiO/sub 2/ deposition, and SiO/sub 2/ deposition without passivation were studied for a uniformly doped n-channel InP FET. The unpassivated SiO/sub 2/ insulated gates produced the lowest transconductance (g/sub m/) values: passivation prior to SiO/sub 2/ deposition improved the characteristics of the devices and increased g/sub m/ significantly. The passivated enhanced barrier gates produced the best characteristics and the highest transconductances consistently. In general the enhanced barrier gates demonstrated twice as high transconductance values as the SiO/sub 2/ insulated gates.<<ETX>>\",\"PeriodicalId\":138960,\"journal\":{\"name\":\"International Conference on Indium Phosphide and Related Materials\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Indium Phosphide and Related Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIPRM.1990.203032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Indium Phosphide and Related Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIPRM.1990.203032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了在PECVD SiO/sub - 2/沉积前使用一种新的表面钝化技术对器件性能的影响,并将器件性能与栅电极界面状态相关联。研究了均匀掺杂n沟道InP场效应管中仅钝化、钝化后的SiO/sub 2/沉积和未钝化的SiO/sub 2/沉积制备的栅极器件。未钝化的SiO/sub - 2/绝缘栅极产生最低的跨导(g/sub - m/)值:在SiO/sub - 2/沉积之前钝化改善了器件的特性并显着提高了g/sub - m/。钝化增强势垒闸具有最佳的特性和最高的跨导率。总的来说,增强势垒栅极的跨导值是SiO/sub - 2/绝缘栅极的两倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A study of insulated and passivated gate technology for InP FETs
The effects of using a new surface passivation technique prior to PECVD SiO/sub 2/ deposition were studied, and the performance of the devices was correlated with the state of the interface at the gate electrode. Devices with gates made using the passivation only, passivation and subsequent SiO/sub 2/ deposition, and SiO/sub 2/ deposition without passivation were studied for a uniformly doped n-channel InP FET. The unpassivated SiO/sub 2/ insulated gates produced the lowest transconductance (g/sub m/) values: passivation prior to SiO/sub 2/ deposition improved the characteristics of the devices and increased g/sub m/ significantly. The passivated enhanced barrier gates produced the best characteristics and the highest transconductances consistently. In general the enhanced barrier gates demonstrated twice as high transconductance values as the SiO/sub 2/ insulated gates.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信