Hendrik Widya Permata, Ari Kusumastuti, Juhari Juhari
{"title":"垂直振荡和旋转吊桥上的数字解决方案","authors":"Hendrik Widya Permata, Ari Kusumastuti, Juhari Juhari","doi":"10.18860/jrmm.v1i1.13409","DOIUrl":null,"url":null,"abstract":"Model gerak osilasi vertikal dan torsional merupakan model yang menggambarkan gerak osilasi vertikal dan gerak torsional pada batang yang digantung. Gerak osilasi vertikal merupakan gerak naik turun suatu benda yang terjadi terus berulang, dan kemudian pada waktu tertentu akan berhenti atau mengalami redaman. Gerak torsional merupakan getaran sudut dari suatu objek yang mengalami rotasi. Model gerak osilasi dan torsional pada dasarnya merupakan sistem persamaan diferensial orde dua. Tujuan dari penelitian ini adalah untuk mengetahui solusi numerik model gerak osilasi vertikal dan torsional menggunakan metode Adams-Bashforth-Moulton orde empat, lima, dan enam. Model gerak osilasi vertikal dan torsional terlebih dahulu diselesaikan menggunakaan metode Runge-Kutta-Fehlberg orde lima untuk mendapatkan solusi awal kemudian model tersebut diselesaikan menggunakan metode Adams-Bashforth-Moulton orde empat, lima dan enam. Hasil solusi numerik setiap metode Adam-Bashforth-Moulton selanjutnya diuji dengan galat relatif. Hasil simulasi numerik model gerak osilasi vertikal dan torsi diperoleh bahwa gerak osilasi vertikal dan gerak torsional merupakan gerak harmonik teredam dan semakin tinggi orde pada metode Adams-Bashforth-Moulton maka akan lebih cepat galat relatif menuju nilai nol dan sebaliknya","PeriodicalId":270235,"journal":{"name":"Jurnal Riset Mahasiswa Matematika","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solusi Numerik Model Gerak Osilasi Vertikal dan Torsional Pada Jembatan Gantung\",\"authors\":\"Hendrik Widya Permata, Ari Kusumastuti, Juhari Juhari\",\"doi\":\"10.18860/jrmm.v1i1.13409\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Model gerak osilasi vertikal dan torsional merupakan model yang menggambarkan gerak osilasi vertikal dan gerak torsional pada batang yang digantung. Gerak osilasi vertikal merupakan gerak naik turun suatu benda yang terjadi terus berulang, dan kemudian pada waktu tertentu akan berhenti atau mengalami redaman. Gerak torsional merupakan getaran sudut dari suatu objek yang mengalami rotasi. Model gerak osilasi dan torsional pada dasarnya merupakan sistem persamaan diferensial orde dua. Tujuan dari penelitian ini adalah untuk mengetahui solusi numerik model gerak osilasi vertikal dan torsional menggunakan metode Adams-Bashforth-Moulton orde empat, lima, dan enam. Model gerak osilasi vertikal dan torsional terlebih dahulu diselesaikan menggunakaan metode Runge-Kutta-Fehlberg orde lima untuk mendapatkan solusi awal kemudian model tersebut diselesaikan menggunakan metode Adams-Bashforth-Moulton orde empat, lima dan enam. Hasil solusi numerik setiap metode Adam-Bashforth-Moulton selanjutnya diuji dengan galat relatif. Hasil simulasi numerik model gerak osilasi vertikal dan torsi diperoleh bahwa gerak osilasi vertikal dan gerak torsional merupakan gerak harmonik teredam dan semakin tinggi orde pada metode Adams-Bashforth-Moulton maka akan lebih cepat galat relatif menuju nilai nol dan sebaliknya\",\"PeriodicalId\":270235,\"journal\":{\"name\":\"Jurnal Riset Mahasiswa Matematika\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Riset Mahasiswa Matematika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18860/jrmm.v1i1.13409\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Riset Mahasiswa Matematika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18860/jrmm.v1i1.13409","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
垂直振荡和旋转振荡模型是描述悬挂杆上垂直振荡和旋转振荡运动的模型。垂直振荡是物体的上下摆动,然后在某一时刻停止或经历缓解。扭转运动是物体旋转的角度振动。振荡和扭转运动模型本质上是一个二阶微分方程系统。本研究的目的是用adams - bashforthmuulton - order four, five和six来研究垂直振荡和旋转旋转数值模型。垂直振荡和扭矩运动模型首先采用Runge-Kutta-Fehlberg - five - order的方法来获得初步的解决方案,然后用adams - bashforthmoulton方法得到4、5和6的解决方案。adam - bashforthmoulton的每一种方法的数字解决方案的结果随后都是一个相对错误。垂直振荡和扭矩运动的数字模拟结果表明,垂直振荡和扭矩运动的运动是一种不受控制的谐振运动,而单振荡和旋转运动的顺序越高,相对于零值的相对错误就越快
Solusi Numerik Model Gerak Osilasi Vertikal dan Torsional Pada Jembatan Gantung
Model gerak osilasi vertikal dan torsional merupakan model yang menggambarkan gerak osilasi vertikal dan gerak torsional pada batang yang digantung. Gerak osilasi vertikal merupakan gerak naik turun suatu benda yang terjadi terus berulang, dan kemudian pada waktu tertentu akan berhenti atau mengalami redaman. Gerak torsional merupakan getaran sudut dari suatu objek yang mengalami rotasi. Model gerak osilasi dan torsional pada dasarnya merupakan sistem persamaan diferensial orde dua. Tujuan dari penelitian ini adalah untuk mengetahui solusi numerik model gerak osilasi vertikal dan torsional menggunakan metode Adams-Bashforth-Moulton orde empat, lima, dan enam. Model gerak osilasi vertikal dan torsional terlebih dahulu diselesaikan menggunakaan metode Runge-Kutta-Fehlberg orde lima untuk mendapatkan solusi awal kemudian model tersebut diselesaikan menggunakan metode Adams-Bashforth-Moulton orde empat, lima dan enam. Hasil solusi numerik setiap metode Adam-Bashforth-Moulton selanjutnya diuji dengan galat relatif. Hasil simulasi numerik model gerak osilasi vertikal dan torsi diperoleh bahwa gerak osilasi vertikal dan gerak torsional merupakan gerak harmonik teredam dan semakin tinggi orde pada metode Adams-Bashforth-Moulton maka akan lebih cepat galat relatif menuju nilai nol dan sebaliknya