TauLiM

Justin Lin, Jiawei Liu, Quanjun Zhang, Xufan Zhang, Chunrong Fang
{"title":"TauLiM","authors":"Justin Lin, Jiawei Liu, Quanjun Zhang, Xufan Zhang, Chunrong Fang","doi":"10.1145/3510454.3516860","DOIUrl":null,"url":null,"abstract":"With the rapid development of object detection in deep learning (DL), applications on LiDAR point clouds have received much attention, such as autonomous driving. To verify the robustness of object detection models by testing, large amounts of diversifted annotated LiDAR point clouds are required to be used as test data. However, considering the sparseness of objects, the diversity of the existing point cloud dataset is limited by the number and types of objects. Therefore, it is important to generate diversifted point clouds by test data augmentation. In this paper, we propose a tool for LiDAR point cloud via test data augmentation, named TauLiM. A well-designed metamorphic relation (MR) [1] is proposed to augment point clouds while maintaining their physical characteristic of LiDAR. TauLiM is composed of three modules, namely point cloud configuration, coordinate filtering, and object insertion. To evaluate our tool, we employ experiments to compare the ability of testing between the existing dataset and the augmented one. The result shows that TauLiM can effectively augment diversified test data and test the object detection model. The video of TauLiM is available at https://www.youtube.com/watch?v=9S6xpRbbhtQ and TauLiM can be used at http://1.13.193.98:2601/.","PeriodicalId":326006,"journal":{"name":"Proceedings of the ACM/IEEE 44th International Conference on Software Engineering: Companion Proceedings","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TauLiM\",\"authors\":\"Justin Lin, Jiawei Liu, Quanjun Zhang, Xufan Zhang, Chunrong Fang\",\"doi\":\"10.1145/3510454.3516860\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the rapid development of object detection in deep learning (DL), applications on LiDAR point clouds have received much attention, such as autonomous driving. To verify the robustness of object detection models by testing, large amounts of diversifted annotated LiDAR point clouds are required to be used as test data. However, considering the sparseness of objects, the diversity of the existing point cloud dataset is limited by the number and types of objects. Therefore, it is important to generate diversifted point clouds by test data augmentation. In this paper, we propose a tool for LiDAR point cloud via test data augmentation, named TauLiM. A well-designed metamorphic relation (MR) [1] is proposed to augment point clouds while maintaining their physical characteristic of LiDAR. TauLiM is composed of three modules, namely point cloud configuration, coordinate filtering, and object insertion. To evaluate our tool, we employ experiments to compare the ability of testing between the existing dataset and the augmented one. The result shows that TauLiM can effectively augment diversified test data and test the object detection model. The video of TauLiM is available at https://www.youtube.com/watch?v=9S6xpRbbhtQ and TauLiM can be used at http://1.13.193.98:2601/.\",\"PeriodicalId\":326006,\"journal\":{\"name\":\"Proceedings of the ACM/IEEE 44th International Conference on Software Engineering: Companion Proceedings\",\"volume\":\"62 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM/IEEE 44th International Conference on Software Engineering: Companion Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3510454.3516860\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM/IEEE 44th International Conference on Software Engineering: Companion Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3510454.3516860","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
TauLiM
With the rapid development of object detection in deep learning (DL), applications on LiDAR point clouds have received much attention, such as autonomous driving. To verify the robustness of object detection models by testing, large amounts of diversifted annotated LiDAR point clouds are required to be used as test data. However, considering the sparseness of objects, the diversity of the existing point cloud dataset is limited by the number and types of objects. Therefore, it is important to generate diversifted point clouds by test data augmentation. In this paper, we propose a tool for LiDAR point cloud via test data augmentation, named TauLiM. A well-designed metamorphic relation (MR) [1] is proposed to augment point clouds while maintaining their physical characteristic of LiDAR. TauLiM is composed of three modules, namely point cloud configuration, coordinate filtering, and object insertion. To evaluate our tool, we employ experiments to compare the ability of testing between the existing dataset and the augmented one. The result shows that TauLiM can effectively augment diversified test data and test the object detection model. The video of TauLiM is available at https://www.youtube.com/watch?v=9S6xpRbbhtQ and TauLiM can be used at http://1.13.193.98:2601/.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信