结合非平稳预测、优化和混合的数据压缩

Christopher Mattern
{"title":"结合非平稳预测、优化和混合的数据压缩","authors":"Christopher Mattern","doi":"10.1109/CCP.2011.22","DOIUrl":null,"url":null,"abstract":"In this paper an approach to modelling nonstationary binary sequences, i.e., predicting the probability of upcoming symbols, is presented. After studying the prediction model we evaluate its performance in two non-artificial test cases. First the model is compared to the Laplace and Krichevsky-Trofimov estimators. Secondly a statistical ensemble model for compressing Burrows-Wheeler-Transform output is worked out and evaluated. A systematic approach to the parameter optimization of an individual model and the ensemble model is stated.","PeriodicalId":167131,"journal":{"name":"2011 First International Conference on Data Compression, Communications and Processing","volume":"2011 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Combining Non-stationary Prediction, Optimization and Mixing for Data Compression\",\"authors\":\"Christopher Mattern\",\"doi\":\"10.1109/CCP.2011.22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper an approach to modelling nonstationary binary sequences, i.e., predicting the probability of upcoming symbols, is presented. After studying the prediction model we evaluate its performance in two non-artificial test cases. First the model is compared to the Laplace and Krichevsky-Trofimov estimators. Secondly a statistical ensemble model for compressing Burrows-Wheeler-Transform output is worked out and evaluated. A systematic approach to the parameter optimization of an individual model and the ensemble model is stated.\",\"PeriodicalId\":167131,\"journal\":{\"name\":\"2011 First International Conference on Data Compression, Communications and Processing\",\"volume\":\"2011 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 First International Conference on Data Compression, Communications and Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCP.2011.22\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 First International Conference on Data Compression, Communications and Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCP.2011.22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文提出了一种非平稳二值序列的建模方法,即预测即将出现的符号的概率。在研究了预测模型之后,我们在两个非人工的测试用例中对其性能进行了评估。首先,将模型与拉普拉斯估计和克里切夫斯基-特罗菲莫夫估计进行比较。其次,提出了一种用于压缩Burrows-Wheeler-Transform输出的统计集成模型,并对其进行了评价。对单个模型和集成模型的参数优化提出了一种系统的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Combining Non-stationary Prediction, Optimization and Mixing for Data Compression
In this paper an approach to modelling nonstationary binary sequences, i.e., predicting the probability of upcoming symbols, is presented. After studying the prediction model we evaluate its performance in two non-artificial test cases. First the model is compared to the Laplace and Krichevsky-Trofimov estimators. Secondly a statistical ensemble model for compressing Burrows-Wheeler-Transform output is worked out and evaluated. A systematic approach to the parameter optimization of an individual model and the ensemble model is stated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信