III-V超薄体、FinFET和纳米线mosfet在两个下一代技术节点上的性能预测

M. Rau, E. Caruso, D. Lizzit, P. Palestri, D. Esseni, A. Schenk, L. Selmi, M. Luisier
{"title":"III-V超薄体、FinFET和纳米线mosfet在两个下一代技术节点上的性能预测","authors":"M. Rau, E. Caruso, D. Lizzit, P. Palestri, D. Esseni, A. Schenk, L. Selmi, M. Luisier","doi":"10.1109/IEDM.2016.7838515","DOIUrl":null,"url":null,"abstract":"Using state-of-the-art simulation tools ranging from semi-classical Monte-Carlo to full-quantum atomistic approaches, the competitiveness of III-V compounds for next-generation high-performance logic switches is confirmed. A planar double-gate ultra-thin-body (DG-UTB), a triple-gate FinFET, and a gate-all-around nanowire (NW) transistor have been designed according to the ITRS specifications for two technology nodes with physical gate lengths of Lg=15 nm and 10.4 nm. A thorough performance comparison of digital and analog figures of merit at these nodes reveals that for Lg=15 nm, the performance of planar and 3-D architectures is comparable. At LG=10.4 nm, the III-V NW promises the highest performance, especially when lowering the supply voltage from 0.59 V to 0.50 V. It also significantly outperforms its strained silicon counterpart. Finally, the effects of series resistance combined with interface traps, surface roughness, alloy scattering, and electron-phonon interactions have been found to deteriorate the III-V ballistic ON-current by 50–60%.","PeriodicalId":186544,"journal":{"name":"2016 IEEE International Electron Devices Meeting (IEDM)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Performance projection of III-V ultra-thin-body, FinFET, and nanowire MOSFETs for two next-generation technology nodes\",\"authors\":\"M. Rau, E. Caruso, D. Lizzit, P. Palestri, D. Esseni, A. Schenk, L. Selmi, M. Luisier\",\"doi\":\"10.1109/IEDM.2016.7838515\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using state-of-the-art simulation tools ranging from semi-classical Monte-Carlo to full-quantum atomistic approaches, the competitiveness of III-V compounds for next-generation high-performance logic switches is confirmed. A planar double-gate ultra-thin-body (DG-UTB), a triple-gate FinFET, and a gate-all-around nanowire (NW) transistor have been designed according to the ITRS specifications for two technology nodes with physical gate lengths of Lg=15 nm and 10.4 nm. A thorough performance comparison of digital and analog figures of merit at these nodes reveals that for Lg=15 nm, the performance of planar and 3-D architectures is comparable. At LG=10.4 nm, the III-V NW promises the highest performance, especially when lowering the supply voltage from 0.59 V to 0.50 V. It also significantly outperforms its strained silicon counterpart. Finally, the effects of series resistance combined with interface traps, surface roughness, alloy scattering, and electron-phonon interactions have been found to deteriorate the III-V ballistic ON-current by 50–60%.\",\"PeriodicalId\":186544,\"journal\":{\"name\":\"2016 IEEE International Electron Devices Meeting (IEDM)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Electron Devices Meeting (IEDM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEDM.2016.7838515\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Electron Devices Meeting (IEDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM.2016.7838515","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

摘要

利用最先进的模拟工具,从半经典蒙特卡罗到全量子原子方法,III-V化合物在下一代高性能逻辑开关中的竞争力得到了证实。根据ITRS规范,设计了物理栅极长度分别为Lg=15 nm和10.4 nm的平面双栅超薄体(DG-UTB)、三栅极FinFET和栅极全能纳米线(NW)晶体管。通过对这些节点上的数字和模拟性能进行全面的性能比较,可以发现对于Lg=15 nm,平面和3d架构的性能是相当的。在LG=10.4 nm时,III-V NW保证了最高的性能,特别是当电源电压从0.59 V降低到0.50 V时。它的性能也明显优于张力硅。最后,发现串联电阻结合界面陷阱、表面粗糙度、合金散射和电子-声子相互作用的影响使III-V弹道导通电流降低了50-60%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance projection of III-V ultra-thin-body, FinFET, and nanowire MOSFETs for two next-generation technology nodes
Using state-of-the-art simulation tools ranging from semi-classical Monte-Carlo to full-quantum atomistic approaches, the competitiveness of III-V compounds for next-generation high-performance logic switches is confirmed. A planar double-gate ultra-thin-body (DG-UTB), a triple-gate FinFET, and a gate-all-around nanowire (NW) transistor have been designed according to the ITRS specifications for two technology nodes with physical gate lengths of Lg=15 nm and 10.4 nm. A thorough performance comparison of digital and analog figures of merit at these nodes reveals that for Lg=15 nm, the performance of planar and 3-D architectures is comparable. At LG=10.4 nm, the III-V NW promises the highest performance, especially when lowering the supply voltage from 0.59 V to 0.50 V. It also significantly outperforms its strained silicon counterpart. Finally, the effects of series resistance combined with interface traps, surface roughness, alloy scattering, and electron-phonon interactions have been found to deteriorate the III-V ballistic ON-current by 50–60%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信