{"title":"神经多语形态屈折的训练策略","authors":"Adam Ek, Jean-Philippe Bernardy","doi":"10.18653/v1/2021.sigmorphon-1.26","DOIUrl":null,"url":null,"abstract":"This paper presents the submission of team GUCLASP to SIGMORPHON 2021 Shared Task on Generalization in Morphological Inflection Generation. We develop a multilingual model for Morphological Inflection and primarily focus on improving the model by using various training strategies to improve accuracy and generalization across languages.","PeriodicalId":187165,"journal":{"name":"Proceedings of the 18th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Training Strategies for Neural Multilingual Morphological Inflection\",\"authors\":\"Adam Ek, Jean-Philippe Bernardy\",\"doi\":\"10.18653/v1/2021.sigmorphon-1.26\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the submission of team GUCLASP to SIGMORPHON 2021 Shared Task on Generalization in Morphological Inflection Generation. We develop a multilingual model for Morphological Inflection and primarily focus on improving the model by using various training strategies to improve accuracy and generalization across languages.\",\"PeriodicalId\":187165,\"journal\":{\"name\":\"Proceedings of the 18th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 18th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/2021.sigmorphon-1.26\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 18th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2021.sigmorphon-1.26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Training Strategies for Neural Multilingual Morphological Inflection
This paper presents the submission of team GUCLASP to SIGMORPHON 2021 Shared Task on Generalization in Morphological Inflection Generation. We develop a multilingual model for Morphological Inflection and primarily focus on improving the model by using various training strategies to improve accuracy and generalization across languages.