切割凸型的复杂性

B. Chazelle, H. Edelsbrunner, L. Guibas
{"title":"切割凸型的复杂性","authors":"B. Chazelle, H. Edelsbrunner, L. Guibas","doi":"10.1145/28395.28403","DOIUrl":null,"url":null,"abstract":"Throughout this paper, we use the term subdivision as a shorthand for “a subdivision of E2 into convex regions”. A subdivision is said to be of size n if it is made of n convex (open) regions, and it is of degree d if every region is adjacent to at most d other regions. We define the line span of a subdivision as the maximum number of regions which can be intersected by a single line (section 3).","PeriodicalId":161795,"journal":{"name":"Proceedings of the nineteenth annual ACM symposium on Theory of computing","volume":"08 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1987-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"The complexity of cutting convex polytypes\",\"authors\":\"B. Chazelle, H. Edelsbrunner, L. Guibas\",\"doi\":\"10.1145/28395.28403\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Throughout this paper, we use the term subdivision as a shorthand for “a subdivision of E2 into convex regions”. A subdivision is said to be of size n if it is made of n convex (open) regions, and it is of degree d if every region is adjacent to at most d other regions. We define the line span of a subdivision as the maximum number of regions which can be intersected by a single line (section 3).\",\"PeriodicalId\":161795,\"journal\":{\"name\":\"Proceedings of the nineteenth annual ACM symposium on Theory of computing\",\"volume\":\"08 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1987-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the nineteenth annual ACM symposium on Theory of computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/28395.28403\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the nineteenth annual ACM symposium on Theory of computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/28395.28403","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

在本文中,我们使用术语细分作为“将E2细分为凸区域”的简写。如果细分由n个凸(开)区域组成,则细分的大小为n;如果每个区域与最多d个其他区域相邻,则细分的度数为d。我们将细分的线跨度定义为可由单线相交的区域的最大数量(第3节)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The complexity of cutting convex polytypes
Throughout this paper, we use the term subdivision as a shorthand for “a subdivision of E2 into convex regions”. A subdivision is said to be of size n if it is made of n convex (open) regions, and it is of degree d if every region is adjacent to at most d other regions. We define the line span of a subdivision as the maximum number of regions which can be intersected by a single line (section 3).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信