{"title":"切割凸型的复杂性","authors":"B. Chazelle, H. Edelsbrunner, L. Guibas","doi":"10.1145/28395.28403","DOIUrl":null,"url":null,"abstract":"Throughout this paper, we use the term subdivision as a shorthand for “a subdivision of E2 into convex regions”. A subdivision is said to be of size n if it is made of n convex (open) regions, and it is of degree d if every region is adjacent to at most d other regions. We define the line span of a subdivision as the maximum number of regions which can be intersected by a single line (section 3).","PeriodicalId":161795,"journal":{"name":"Proceedings of the nineteenth annual ACM symposium on Theory of computing","volume":"08 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1987-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"The complexity of cutting convex polytypes\",\"authors\":\"B. Chazelle, H. Edelsbrunner, L. Guibas\",\"doi\":\"10.1145/28395.28403\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Throughout this paper, we use the term subdivision as a shorthand for “a subdivision of E2 into convex regions”. A subdivision is said to be of size n if it is made of n convex (open) regions, and it is of degree d if every region is adjacent to at most d other regions. We define the line span of a subdivision as the maximum number of regions which can be intersected by a single line (section 3).\",\"PeriodicalId\":161795,\"journal\":{\"name\":\"Proceedings of the nineteenth annual ACM symposium on Theory of computing\",\"volume\":\"08 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1987-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the nineteenth annual ACM symposium on Theory of computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/28395.28403\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the nineteenth annual ACM symposium on Theory of computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/28395.28403","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Throughout this paper, we use the term subdivision as a shorthand for “a subdivision of E2 into convex regions”. A subdivision is said to be of size n if it is made of n convex (open) regions, and it is of degree d if every region is adjacent to at most d other regions. We define the line span of a subdivision as the maximum number of regions which can be intersected by a single line (section 3).