基于手势的改进人机交互使用微软的Kinect传感器

S. Saha, Biswarup Ganguly, A. Konar
{"title":"基于手势的改进人机交互使用微软的Kinect传感器","authors":"S. Saha, Biswarup Ganguly, A. Konar","doi":"10.1109/MICROCOM.2016.7522582","DOIUrl":null,"url":null,"abstract":"A simple and robust gesture recognition system is proposed for better human-computer interaction using Microsoft's Kinect sensor. The Kinect is employed to construct skeletons for a subject in the 3D space using twenty body joint coordinates. From this skeletal information, ten joints are required and six triangles have been constructed along with six respective centroids. The feature space corresponds to the Euclidean distances between spine joint and the centroids for each frame. For classification purpose, support vector machine is used using a kernel function. The proposed work is widely applicable for several gesture driven computer applications and produces an average accuracy rate of 88.7%.","PeriodicalId":118902,"journal":{"name":"2016 International Conference on Microelectronics, Computing and Communications (MicroCom)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Gesture based improved human-computer interaction using Microsoft's Kinect sensor\",\"authors\":\"S. Saha, Biswarup Ganguly, A. Konar\",\"doi\":\"10.1109/MICROCOM.2016.7522582\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A simple and robust gesture recognition system is proposed for better human-computer interaction using Microsoft's Kinect sensor. The Kinect is employed to construct skeletons for a subject in the 3D space using twenty body joint coordinates. From this skeletal information, ten joints are required and six triangles have been constructed along with six respective centroids. The feature space corresponds to the Euclidean distances between spine joint and the centroids for each frame. For classification purpose, support vector machine is used using a kernel function. The proposed work is widely applicable for several gesture driven computer applications and produces an average accuracy rate of 88.7%.\",\"PeriodicalId\":118902,\"journal\":{\"name\":\"2016 International Conference on Microelectronics, Computing and Communications (MicroCom)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Conference on Microelectronics, Computing and Communications (MicroCom)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MICROCOM.2016.7522582\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Microelectronics, Computing and Communications (MicroCom)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MICROCOM.2016.7522582","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

为了更好地实现人机交互,提出了一种简单而健壮的手势识别系统,该系统使用微软的Kinect传感器。Kinect使用20个身体关节坐标在3D空间中为一个主体构建骨架。根据这些骨骼信息,需要10个关节和6个三角形以及6个各自的质心。特征空间对应于每帧脊柱关节和质心之间的欧氏距离。为了便于分类,我们使用核函数来支持向量机。所提出的工作广泛适用于几种手势驱动的计算机应用,平均准确率达到88.7%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gesture based improved human-computer interaction using Microsoft's Kinect sensor
A simple and robust gesture recognition system is proposed for better human-computer interaction using Microsoft's Kinect sensor. The Kinect is employed to construct skeletons for a subject in the 3D space using twenty body joint coordinates. From this skeletal information, ten joints are required and six triangles have been constructed along with six respective centroids. The feature space corresponds to the Euclidean distances between spine joint and the centroids for each frame. For classification purpose, support vector machine is used using a kernel function. The proposed work is widely applicable for several gesture driven computer applications and produces an average accuracy rate of 88.7%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信