涡轮机械频域耦合流固耦合仿真方法

C. Berthold, C. Frey, Harald Schönenborn
{"title":"涡轮机械频域耦合流固耦合仿真方法","authors":"C. Berthold, C. Frey, Harald Schönenborn","doi":"10.1115/GT2018-76220","DOIUrl":null,"url":null,"abstract":"Turbomachinery components are exposed to unsteady aerodynamic loads which must be considered during the design process to ensure the structural mechanical integrity. There are two primary mechanisms which cause structural vibrations and can lead to high-cycle fatigue due to high dynamic stresses: flutter (self-excited vibrations) and forced response (forced excitation, e.g. wakes from upstream blade rows). In this work an emerging numerical frequency-domain method which is designed to efficiently simulate coupled fluid-structure interaction (FSI) problems considering nonlinearities in the flow and structure is modified and applied to an academic and a realistic test case. Furthermore complex structural eigenmodes are considered instead of purely real modes as was demonstrated in the literature so far. This method is able to predict limit cycle oscillations and forced response amplitudes. The coupled solver uses the Harmonic Balance (HB) method with an alternating frequency time approach to model periodically unsteady flows and structure dynamics. The resulting nonlinear HB equations of the flow are solved with a pseudo-time stepping method while the nonlinear HB equations of the structure are solved with a Newton method. The dynamics of the involved structure are further simplified by considering only one relevant eigenmode of the structure. The method is applied to a 3D axial turbine configuration with a modified Young’s modulus for the material of the blisk. The standard flutter curve of the blade row shows that at least one eigenmode is aerodynamically unstable at certain nodal diameters. As a first model test case for the harmonic balance solver, the nonlinear structural damping is defined as a cubic modal damping term. The results of the frequency-domain method are compared to coupled FSI simulations in the time domain. The analysis shows that the frequency-domain method is very promising in terms of both computational efficiency and accuracy.","PeriodicalId":347795,"journal":{"name":"Volume 7C: Structures and Dynamics","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Coupled Fluid Structure Simulation Method in the Frequency Domain for Turbomachinery Applications\",\"authors\":\"C. Berthold, C. Frey, Harald Schönenborn\",\"doi\":\"10.1115/GT2018-76220\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Turbomachinery components are exposed to unsteady aerodynamic loads which must be considered during the design process to ensure the structural mechanical integrity. There are two primary mechanisms which cause structural vibrations and can lead to high-cycle fatigue due to high dynamic stresses: flutter (self-excited vibrations) and forced response (forced excitation, e.g. wakes from upstream blade rows). In this work an emerging numerical frequency-domain method which is designed to efficiently simulate coupled fluid-structure interaction (FSI) problems considering nonlinearities in the flow and structure is modified and applied to an academic and a realistic test case. Furthermore complex structural eigenmodes are considered instead of purely real modes as was demonstrated in the literature so far. This method is able to predict limit cycle oscillations and forced response amplitudes. The coupled solver uses the Harmonic Balance (HB) method with an alternating frequency time approach to model periodically unsteady flows and structure dynamics. The resulting nonlinear HB equations of the flow are solved with a pseudo-time stepping method while the nonlinear HB equations of the structure are solved with a Newton method. The dynamics of the involved structure are further simplified by considering only one relevant eigenmode of the structure. The method is applied to a 3D axial turbine configuration with a modified Young’s modulus for the material of the blisk. The standard flutter curve of the blade row shows that at least one eigenmode is aerodynamically unstable at certain nodal diameters. As a first model test case for the harmonic balance solver, the nonlinear structural damping is defined as a cubic modal damping term. The results of the frequency-domain method are compared to coupled FSI simulations in the time domain. The analysis shows that the frequency-domain method is very promising in terms of both computational efficiency and accuracy.\",\"PeriodicalId\":347795,\"journal\":{\"name\":\"Volume 7C: Structures and Dynamics\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 7C: Structures and Dynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/GT2018-76220\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 7C: Structures and Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/GT2018-76220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

涡轮机械部件在设计过程中必须考虑非定常气动载荷,以保证结构的力学完整性。有两种主要机制导致结构振动,并可能由于高动应力而导致高周疲劳:颤振(自激振动)和强迫响应(强迫激励,例如来自上游叶片排的尾迹)。本文改进了一种新兴的数值频域方法,该方法旨在有效地模拟流固耦合(FSI)问题,并考虑了流动和结构的非线性,并将其应用于一个学术和现实的测试案例。此外,考虑复杂结构特征模态,而不是纯实模态,如目前文献所证明的那样。该方法能够预测极限环振荡和强迫响应幅值。耦合求解器采用谐波平衡(HB)方法和交变频率时间方法来模拟周期性非定常流场和结构动力学。用拟时间步进法求解了流动的非线性HB方程,用牛顿法求解了结构的非线性HB方程。通过只考虑结构的一个相关特征模态,进一步简化了结构的动力学。该方法应用于一个三维轴向涡轮结构与改进的杨氏模量的叶片材料。叶片排的标准颤振曲线表明,在一定的节径处,至少有一个特征模态是气动不稳定的。作为谐波平衡求解器的第一个模型测试用例,将非线性结构阻尼定义为三次模态阻尼项。将频域方法的结果与时域的耦合FSI模拟结果进行了比较。分析表明,频域方法在计算效率和精度上都是很有前途的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Coupled Fluid Structure Simulation Method in the Frequency Domain for Turbomachinery Applications
Turbomachinery components are exposed to unsteady aerodynamic loads which must be considered during the design process to ensure the structural mechanical integrity. There are two primary mechanisms which cause structural vibrations and can lead to high-cycle fatigue due to high dynamic stresses: flutter (self-excited vibrations) and forced response (forced excitation, e.g. wakes from upstream blade rows). In this work an emerging numerical frequency-domain method which is designed to efficiently simulate coupled fluid-structure interaction (FSI) problems considering nonlinearities in the flow and structure is modified and applied to an academic and a realistic test case. Furthermore complex structural eigenmodes are considered instead of purely real modes as was demonstrated in the literature so far. This method is able to predict limit cycle oscillations and forced response amplitudes. The coupled solver uses the Harmonic Balance (HB) method with an alternating frequency time approach to model periodically unsteady flows and structure dynamics. The resulting nonlinear HB equations of the flow are solved with a pseudo-time stepping method while the nonlinear HB equations of the structure are solved with a Newton method. The dynamics of the involved structure are further simplified by considering only one relevant eigenmode of the structure. The method is applied to a 3D axial turbine configuration with a modified Young’s modulus for the material of the blisk. The standard flutter curve of the blade row shows that at least one eigenmode is aerodynamically unstable at certain nodal diameters. As a first model test case for the harmonic balance solver, the nonlinear structural damping is defined as a cubic modal damping term. The results of the frequency-domain method are compared to coupled FSI simulations in the time domain. The analysis shows that the frequency-domain method is very promising in terms of both computational efficiency and accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信