基于多层神经网络的孟加拉语语音识别

Mohammed Rokibul Alam Kotwal, Manoj Banik, Qamrun Nahar Eity, M. N. Huda, G. Muhammad, Y. Alotaibi
{"title":"基于多层神经网络的孟加拉语语音识别","authors":"Mohammed Rokibul Alam Kotwal, Manoj Banik, Qamrun Nahar Eity, M. N. Huda, G. Muhammad, Y. Alotaibi","doi":"10.1109/ICCITECHN.2010.5723837","DOIUrl":null,"url":null,"abstract":"This paper presents a Bangla phoneme recognition method for Automatic Speech Recognition (ASR). The method consists of two stages: i) a multilayer neural network (MLN), which converts acoustic features, mel frequency cepstral coefficients (MFCCs), into phoneme probabilities and ii) the phoneme probabilities obtained from the first stage and corresponding Δ and ΔΔ parameters calculated by linear regression (LR) are inserted into a hidden Markov model (HMM) based classifier to obtain more accurate phoneme strings. From the experiments on Bangla speech corpus prepared by us, it is observed that the proposed method provides higher phoneme recognition performance than the existing method. Moreover, it requires a fewer mixture components in the HMMs.","PeriodicalId":149135,"journal":{"name":"2010 13th International Conference on Computer and Information Technology (ICCIT)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Bangla phoneme recognition for ASR using multilayer neural network\",\"authors\":\"Mohammed Rokibul Alam Kotwal, Manoj Banik, Qamrun Nahar Eity, M. N. Huda, G. Muhammad, Y. Alotaibi\",\"doi\":\"10.1109/ICCITECHN.2010.5723837\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a Bangla phoneme recognition method for Automatic Speech Recognition (ASR). The method consists of two stages: i) a multilayer neural network (MLN), which converts acoustic features, mel frequency cepstral coefficients (MFCCs), into phoneme probabilities and ii) the phoneme probabilities obtained from the first stage and corresponding Δ and ΔΔ parameters calculated by linear regression (LR) are inserted into a hidden Markov model (HMM) based classifier to obtain more accurate phoneme strings. From the experiments on Bangla speech corpus prepared by us, it is observed that the proposed method provides higher phoneme recognition performance than the existing method. Moreover, it requires a fewer mixture components in the HMMs.\",\"PeriodicalId\":149135,\"journal\":{\"name\":\"2010 13th International Conference on Computer and Information Technology (ICCIT)\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 13th International Conference on Computer and Information Technology (ICCIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCITECHN.2010.5723837\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 13th International Conference on Computer and Information Technology (ICCIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCITECHN.2010.5723837","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

提出了一种用于自动语音识别(ASR)的孟加拉语音素识别方法。该方法包括两个阶段:1)多层神经网络(MLN),将声学特征,mel频退系数(MFCCs)转换为音素概率;2)将第一阶段获得的音素概率以及通过线性回归(LR)计算的相应Δ和ΔΔ参数插入到基于隐马尔可夫模型(HMM)的分类器中,以获得更准确的音素字符串。通过对我们准备的孟加拉语语音语料库的实验,发现本文方法的音素识别性能优于现有方法。此外,它需要更少的混合成分在hmm。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bangla phoneme recognition for ASR using multilayer neural network
This paper presents a Bangla phoneme recognition method for Automatic Speech Recognition (ASR). The method consists of two stages: i) a multilayer neural network (MLN), which converts acoustic features, mel frequency cepstral coefficients (MFCCs), into phoneme probabilities and ii) the phoneme probabilities obtained from the first stage and corresponding Δ and ΔΔ parameters calculated by linear regression (LR) are inserted into a hidden Markov model (HMM) based classifier to obtain more accurate phoneme strings. From the experiments on Bangla speech corpus prepared by us, it is observed that the proposed method provides higher phoneme recognition performance than the existing method. Moreover, it requires a fewer mixture components in the HMMs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信