Wen-Dong Li, Xiaoyu You, H. Mu, Jun-bo Deng, Guanjun Zhang
{"title":"高压FGM绝缘子的数值优化及3d打印制造概念","authors":"Wen-Dong Li, Xiaoyu You, H. Mu, Jun-bo Deng, Guanjun Zhang","doi":"10.1109/APPEEC.2015.7381007","DOIUrl":null,"url":null,"abstract":"The application of Functionally Graded Material (FGM) in the solid insulation of high voltage apparatus is discussed. Firstly, the concept of FGM and its effect on electric field (E-field) optimization is introduced. Secondly, optimization of permittivity FGM (e-FGM) insulator is studied. A numerical technique for the optimization of permittivity distribution in e- FGM spacer is proposed and simulated on three typical spacer models, i.e. cone type, disk type and basin type. It is confirmed that the FGM application could significantly improve the E-field distribution. Moreover, the effect of the shrinking coefficient in the algorithm is discussed. Finally, concept of a novel fabrication method for FGM spacers is proposed based on the rapid- developing 3D printing technology. The process and advantage of this `bottom to up' method is discussed.","PeriodicalId":439089,"journal":{"name":"2015 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Numerical optimization and 3D-printing fabrication concept of high voltage FGM insulator\",\"authors\":\"Wen-Dong Li, Xiaoyu You, H. Mu, Jun-bo Deng, Guanjun Zhang\",\"doi\":\"10.1109/APPEEC.2015.7381007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The application of Functionally Graded Material (FGM) in the solid insulation of high voltage apparatus is discussed. Firstly, the concept of FGM and its effect on electric field (E-field) optimization is introduced. Secondly, optimization of permittivity FGM (e-FGM) insulator is studied. A numerical technique for the optimization of permittivity distribution in e- FGM spacer is proposed and simulated on three typical spacer models, i.e. cone type, disk type and basin type. It is confirmed that the FGM application could significantly improve the E-field distribution. Moreover, the effect of the shrinking coefficient in the algorithm is discussed. Finally, concept of a novel fabrication method for FGM spacers is proposed based on the rapid- developing 3D printing technology. The process and advantage of this `bottom to up' method is discussed.\",\"PeriodicalId\":439089,\"journal\":{\"name\":\"2015 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APPEEC.2015.7381007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APPEEC.2015.7381007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Numerical optimization and 3D-printing fabrication concept of high voltage FGM insulator
The application of Functionally Graded Material (FGM) in the solid insulation of high voltage apparatus is discussed. Firstly, the concept of FGM and its effect on electric field (E-field) optimization is introduced. Secondly, optimization of permittivity FGM (e-FGM) insulator is studied. A numerical technique for the optimization of permittivity distribution in e- FGM spacer is proposed and simulated on three typical spacer models, i.e. cone type, disk type and basin type. It is confirmed that the FGM application could significantly improve the E-field distribution. Moreover, the effect of the shrinking coefficient in the algorithm is discussed. Finally, concept of a novel fabrication method for FGM spacers is proposed based on the rapid- developing 3D printing technology. The process and advantage of this `bottom to up' method is discussed.