旋转台球的量子力学

N. Jha, S. Jain
{"title":"旋转台球的量子力学","authors":"N. Jha, S. Jain","doi":"10.7566/JPSCP.1.013116","DOIUrl":null,"url":null,"abstract":"Integrability of a square billiard is spontaneously broken as it rotates about one of its corners. The system becomes quasi-integrable where the invariant tori are broken with respect to a certain parameter, $\\lambda = 2E/\\omega^{2}$ where E is the energy of the particle inside the billiard and $\\omega$ is the angular frequency of rotation of billiard. We study the system classically and quantum mechanically in view of obtaining a correspondence in the two descriptions. Classical phase space in Poincar\\'{e} surface of section shows transition from regular to chaotic motion as the parameter $\\lambda$ is decreased. In the Quantum counterpart, the spectral statistics shows a transition from Poisson to Wigner distribution as the system turns chaotic with decrease in $\\lambda$. The wavefunction statistics however show breakdown of time-reversal symmetry as $\\lambda$ decreases.","PeriodicalId":166772,"journal":{"name":"arXiv: Chaotic Dynamics","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum Mechanics of a Rotating Billiard\",\"authors\":\"N. Jha, S. Jain\",\"doi\":\"10.7566/JPSCP.1.013116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Integrability of a square billiard is spontaneously broken as it rotates about one of its corners. The system becomes quasi-integrable where the invariant tori are broken with respect to a certain parameter, $\\\\lambda = 2E/\\\\omega^{2}$ where E is the energy of the particle inside the billiard and $\\\\omega$ is the angular frequency of rotation of billiard. We study the system classically and quantum mechanically in view of obtaining a correspondence in the two descriptions. Classical phase space in Poincar\\\\'{e} surface of section shows transition from regular to chaotic motion as the parameter $\\\\lambda$ is decreased. In the Quantum counterpart, the spectral statistics shows a transition from Poisson to Wigner distribution as the system turns chaotic with decrease in $\\\\lambda$. The wavefunction statistics however show breakdown of time-reversal symmetry as $\\\\lambda$ decreases.\",\"PeriodicalId\":166772,\"journal\":{\"name\":\"arXiv: Chaotic Dynamics\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Chaotic Dynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7566/JPSCP.1.013116\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Chaotic Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7566/JPSCP.1.013116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

方形台球的可积性在它绕其一个角旋转时被自发地打破。当不变环面相对于某个参数被打破时,系统变得准可积,$\lambda = 2E/\omega^{2}$其中E是台球内粒子的能量$\omega$是台球旋转的角频率。我们从经典和量子力学的角度对系统进行了研究,以期在两种描述中获得对应关系。随着参数$\lambda$的减小,截面庞卡罗曲面的经典相空间呈现由规则运动向混沌运动的过渡。在量子对应体中,随着$\lambda$的减小,系统变得混沌,谱统计显示从泊松分布到维格纳分布的转变。然而,随着$\lambda$的减小,波函数统计数据显示时间反转对称性的破坏。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum Mechanics of a Rotating Billiard
Integrability of a square billiard is spontaneously broken as it rotates about one of its corners. The system becomes quasi-integrable where the invariant tori are broken with respect to a certain parameter, $\lambda = 2E/\omega^{2}$ where E is the energy of the particle inside the billiard and $\omega$ is the angular frequency of rotation of billiard. We study the system classically and quantum mechanically in view of obtaining a correspondence in the two descriptions. Classical phase space in Poincar\'{e} surface of section shows transition from regular to chaotic motion as the parameter $\lambda$ is decreased. In the Quantum counterpart, the spectral statistics shows a transition from Poisson to Wigner distribution as the system turns chaotic with decrease in $\lambda$. The wavefunction statistics however show breakdown of time-reversal symmetry as $\lambda$ decreases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信