{"title":"w波段稀疏六臂螺旋相控阵天线","authors":"Mei Jiang, Song Ji, X. Xuan, Rubing Han, Lili Zhu","doi":"10.1109/ICEICT51264.2020.9334271","DOIUrl":null,"url":null,"abstract":"In this paper, a sparsely phased array antenna based on six-arm spiral arrangement is proposed for W-band applications. The proposed antenna element consists of a double-layered stacked patch fed by coaxial probe. In order to reduce the element number of the antenna array while maintaining wide scanning angle and low sidelobe, a six-arm array configuration is developed as a substitution of the conventional rectangular array. A prototype of the six-arm spiral array is simulated at 94GHz band. The simulation results exhibit a maximum gain of 28.5dBi with a scanning angle of 30°. By using the six-arm spiral array design, the proposed antenna can achieve 30 degree scanning range with gain loss less than 1.6dB.","PeriodicalId":124337,"journal":{"name":"2020 IEEE 3rd International Conference on Electronic Information and Communication Technology (ICEICT)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Sparsely Six-arm Spiral Phased array antenna for W-band applications\",\"authors\":\"Mei Jiang, Song Ji, X. Xuan, Rubing Han, Lili Zhu\",\"doi\":\"10.1109/ICEICT51264.2020.9334271\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a sparsely phased array antenna based on six-arm spiral arrangement is proposed for W-band applications. The proposed antenna element consists of a double-layered stacked patch fed by coaxial probe. In order to reduce the element number of the antenna array while maintaining wide scanning angle and low sidelobe, a six-arm array configuration is developed as a substitution of the conventional rectangular array. A prototype of the six-arm spiral array is simulated at 94GHz band. The simulation results exhibit a maximum gain of 28.5dBi with a scanning angle of 30°. By using the six-arm spiral array design, the proposed antenna can achieve 30 degree scanning range with gain loss less than 1.6dB.\",\"PeriodicalId\":124337,\"journal\":{\"name\":\"2020 IEEE 3rd International Conference on Electronic Information and Communication Technology (ICEICT)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 3rd International Conference on Electronic Information and Communication Technology (ICEICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEICT51264.2020.9334271\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 3rd International Conference on Electronic Information and Communication Technology (ICEICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEICT51264.2020.9334271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Sparsely Six-arm Spiral Phased array antenna for W-band applications
In this paper, a sparsely phased array antenna based on six-arm spiral arrangement is proposed for W-band applications. The proposed antenna element consists of a double-layered stacked patch fed by coaxial probe. In order to reduce the element number of the antenna array while maintaining wide scanning angle and low sidelobe, a six-arm array configuration is developed as a substitution of the conventional rectangular array. A prototype of the six-arm spiral array is simulated at 94GHz band. The simulation results exhibit a maximum gain of 28.5dBi with a scanning angle of 30°. By using the six-arm spiral array design, the proposed antenna can achieve 30 degree scanning range with gain loss less than 1.6dB.