基于MKPF算法的金融期权定价

Yingbo Zhang, Fasheng Wang, Yuejin Lin
{"title":"基于MKPF算法的金融期权定价","authors":"Yingbo Zhang, Fasheng Wang, Yuejin Lin","doi":"10.1109/SERA.2009.17","DOIUrl":null,"url":null,"abstract":"A mixture Kalman Particle Filter (MKPF) based options pricing method is proposed. The MKPF algorithm uses the unscented Kalman filter (UKF) and the extended Kalman filter (EKF) as proposal distribution to generate the importance sampling density. Each particle is firstly updated by the UKF and obtains a state estimation. Thereafter, this estimation is used as the prior of the EKF, in which the particle is updated again to gain the final estimation of the state. We use the classical B-S model in the experiment aiming at evaluating the performance of the newly proposed method and other existing algorithms. The experimental results show that the MKPF outperforms other algorithms.","PeriodicalId":333607,"journal":{"name":"2009 Seventh ACIS International Conference on Software Engineering Research, Management and Applications","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Financial Options Pricing Using the MKPF Algorithm\",\"authors\":\"Yingbo Zhang, Fasheng Wang, Yuejin Lin\",\"doi\":\"10.1109/SERA.2009.17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A mixture Kalman Particle Filter (MKPF) based options pricing method is proposed. The MKPF algorithm uses the unscented Kalman filter (UKF) and the extended Kalman filter (EKF) as proposal distribution to generate the importance sampling density. Each particle is firstly updated by the UKF and obtains a state estimation. Thereafter, this estimation is used as the prior of the EKF, in which the particle is updated again to gain the final estimation of the state. We use the classical B-S model in the experiment aiming at evaluating the performance of the newly proposed method and other existing algorithms. The experimental results show that the MKPF outperforms other algorithms.\",\"PeriodicalId\":333607,\"journal\":{\"name\":\"2009 Seventh ACIS International Conference on Software Engineering Research, Management and Applications\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Seventh ACIS International Conference on Software Engineering Research, Management and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SERA.2009.17\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Seventh ACIS International Conference on Software Engineering Research, Management and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SERA.2009.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于混合卡尔曼粒子滤波(MKPF)的期权定价方法。MKPF算法采用无气味卡尔曼滤波(UKF)和扩展卡尔曼滤波(EKF)作为建议分布来生成重要采样密度。首先通过UKF对每个粒子进行更新,得到状态估计。然后,将该估计用作EKF的先验,其中再次更新粒子以获得最终的状态估计。我们在实验中使用经典的B-S模型,旨在评估新提出的方法和其他现有算法的性能。实验结果表明,MKPF算法优于其他算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Financial Options Pricing Using the MKPF Algorithm
A mixture Kalman Particle Filter (MKPF) based options pricing method is proposed. The MKPF algorithm uses the unscented Kalman filter (UKF) and the extended Kalman filter (EKF) as proposal distribution to generate the importance sampling density. Each particle is firstly updated by the UKF and obtains a state estimation. Thereafter, this estimation is used as the prior of the EKF, in which the particle is updated again to gain the final estimation of the state. We use the classical B-S model in the experiment aiming at evaluating the performance of the newly proposed method and other existing algorithms. The experimental results show that the MKPF outperforms other algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信