遗传算法和进化计算

Ningchuan Xiao, Marc Armstrong
{"title":"遗传算法和进化计算","authors":"Ningchuan Xiao, Marc Armstrong","doi":"10.22224/gistbok/2020.1.1","DOIUrl":null,"url":null,"abstract":"A genetic algorithm is a technique for optimization; that is, it can be used to find the minimum or maximum of some arbitrary function. While there are a lar ge number of mathematical techniques for accomplishing this, both in general and for specific circumstances, a genetic algorithm is unique. It is a stochastic method, and it will find a global minimum, neither property being singular . The approach is remarkable because it is based on the way that a population of living or ganisms grows and evolves, fitting into their ecological niche better with each generation.","PeriodicalId":325401,"journal":{"name":"Geographic Information Science & Technology Body of Knowledge","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Genetic Algorithms and Evolutionary Computing\",\"authors\":\"Ningchuan Xiao, Marc Armstrong\",\"doi\":\"10.22224/gistbok/2020.1.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A genetic algorithm is a technique for optimization; that is, it can be used to find the minimum or maximum of some arbitrary function. While there are a lar ge number of mathematical techniques for accomplishing this, both in general and for specific circumstances, a genetic algorithm is unique. It is a stochastic method, and it will find a global minimum, neither property being singular . The approach is remarkable because it is based on the way that a population of living or ganisms grows and evolves, fitting into their ecological niche better with each generation.\",\"PeriodicalId\":325401,\"journal\":{\"name\":\"Geographic Information Science & Technology Body of Knowledge\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geographic Information Science & Technology Body of Knowledge\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22224/gistbok/2020.1.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geographic Information Science & Technology Body of Knowledge","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22224/gistbok/2020.1.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

遗传算法是一种优化技术;也就是说,它可以用来求任意函数的最小值或最大值。虽然有大量的数学技术可以实现这一点,无论是在一般情况下还是在特定情况下,遗传算法都是独一无二的。它是一种随机方法,它会找到一个全局最小值,这两个性质都不是奇异的。这种方法是非凡的,因为它是基于生物种群生长和进化的方式,每一代都更好地适应它们的生态位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Genetic Algorithms and Evolutionary Computing
A genetic algorithm is a technique for optimization; that is, it can be used to find the minimum or maximum of some arbitrary function. While there are a lar ge number of mathematical techniques for accomplishing this, both in general and for specific circumstances, a genetic algorithm is unique. It is a stochastic method, and it will find a global minimum, neither property being singular . The approach is remarkable because it is based on the way that a population of living or ganisms grows and evolves, fitting into their ecological niche better with each generation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信