除法和平方根的有效初始逼近和快速收敛方法

Masayuki Ito, N. Takagi, S. Yajima
{"title":"除法和平方根的有效初始逼近和快速收敛方法","authors":"Masayuki Ito, N. Takagi, S. Yajima","doi":"10.1109/ARITH.1995.465383","DOIUrl":null,"url":null,"abstract":"Efficient initial approximations and fast converging algorithms are important to achieve the desired precision faster at lower hardware cost in multiplicative division and square root. In this paper, a new initial approximation method for division, an accelerated higher order converging division algorithm, and a new square root algorithm are proposed. They are all suitable for implementation on an arithmetic unit where one multiply-accumulate operation, can be executed in one cycle. In the case of division, the combination of our initial approximation method and our converging algorithm, enables a single iteration of the converging algorithm to produce double-precision quotients. Our new square root algorithm can form, double-precision square roots faster using smaller look-up tables than the Newton-Raphson method.<<ETX>>","PeriodicalId":332829,"journal":{"name":"Proceedings of the 12th Symposium on Computer Arithmetic","volume":"123 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":"{\"title\":\"Efficient initial approximation and fast converging methods for division and square root\",\"authors\":\"Masayuki Ito, N. Takagi, S. Yajima\",\"doi\":\"10.1109/ARITH.1995.465383\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Efficient initial approximations and fast converging algorithms are important to achieve the desired precision faster at lower hardware cost in multiplicative division and square root. In this paper, a new initial approximation method for division, an accelerated higher order converging division algorithm, and a new square root algorithm are proposed. They are all suitable for implementation on an arithmetic unit where one multiply-accumulate operation, can be executed in one cycle. In the case of division, the combination of our initial approximation method and our converging algorithm, enables a single iteration of the converging algorithm to produce double-precision quotients. Our new square root algorithm can form, double-precision square roots faster using smaller look-up tables than the Newton-Raphson method.<<ETX>>\",\"PeriodicalId\":332829,\"journal\":{\"name\":\"Proceedings of the 12th Symposium on Computer Arithmetic\",\"volume\":\"123 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"37\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 12th Symposium on Computer Arithmetic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ARITH.1995.465383\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 12th Symposium on Computer Arithmetic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARITH.1995.465383","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37

摘要

在乘法除法和平方根中,高效的初始近似和快速收敛算法对于以较低的硬件成本更快地达到所需的精度至关重要。本文提出了一种新的除法初始逼近法、一种加速的高阶收敛除法和一种新的平方根算法。它们都适合在算术单元上实现,其中一个乘法累加操作可以在一个周期内执行。在除法的情况下,我们的初始逼近方法和我们的收敛算法相结合,使得收敛算法的一次迭代可以产生双精度商。我们的新平方根算法可以使用比牛顿-拉夫森方法更小的查找表更快地形成双精度平方根。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient initial approximation and fast converging methods for division and square root
Efficient initial approximations and fast converging algorithms are important to achieve the desired precision faster at lower hardware cost in multiplicative division and square root. In this paper, a new initial approximation method for division, an accelerated higher order converging division algorithm, and a new square root algorithm are proposed. They are all suitable for implementation on an arithmetic unit where one multiply-accumulate operation, can be executed in one cycle. In the case of division, the combination of our initial approximation method and our converging algorithm, enables a single iteration of the converging algorithm to produce double-precision quotients. Our new square root algorithm can form, double-precision square roots faster using smaller look-up tables than the Newton-Raphson method.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信