温柔筛选同行:推断小额借款人的质量

Rajkamal Iyer, A. Khwaja, Erzo F. P. Luttmer, K. Shue
{"title":"温柔筛选同行:推断小额借款人的质量","authors":"Rajkamal Iyer, A. Khwaja, Erzo F. P. Luttmer, K. Shue","doi":"10.1287/mnsc.2015.2181","DOIUrl":null,"url":null,"abstract":"This paper examines the performance of new online lending markets that rely on nonexpert individuals to screen their peers' creditworthiness. We find that these peer lenders predict an individual's likelihood of defaulting on a loan with 45% greater accuracy than the borrower's exact credit score unobserved by the lenders, who only see a credit category. Moreover, peer lenders achieve 87% of the predictive power of an econometrician who observes all standard financial information about borrowers. Screening through soft or nonstandard information is relatively more important when evaluating lower-quality borrowers. Our results highlight how aggregating over the views of peers and leveraging nonstandard information can enhance lending efficiency. \n \nThis paper was accepted by Amit Seru, finance.","PeriodicalId":276603,"journal":{"name":"Kauffman: Conferences & Seminars (Topic)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"453","resultStr":"{\"title\":\"Screening Peers Softly: Inferring the Quality of Small Borrowers\",\"authors\":\"Rajkamal Iyer, A. Khwaja, Erzo F. P. Luttmer, K. Shue\",\"doi\":\"10.1287/mnsc.2015.2181\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper examines the performance of new online lending markets that rely on nonexpert individuals to screen their peers' creditworthiness. We find that these peer lenders predict an individual's likelihood of defaulting on a loan with 45% greater accuracy than the borrower's exact credit score unobserved by the lenders, who only see a credit category. Moreover, peer lenders achieve 87% of the predictive power of an econometrician who observes all standard financial information about borrowers. Screening through soft or nonstandard information is relatively more important when evaluating lower-quality borrowers. Our results highlight how aggregating over the views of peers and leveraging nonstandard information can enhance lending efficiency. \\n \\nThis paper was accepted by Amit Seru, finance.\",\"PeriodicalId\":276603,\"journal\":{\"name\":\"Kauffman: Conferences & Seminars (Topic)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"453\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kauffman: Conferences & Seminars (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1287/mnsc.2015.2181\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kauffman: Conferences & Seminars (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1287/mnsc.2015.2181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 453

摘要

本文考察了新兴网络借贷市场的表现,这些市场依赖于非专家个人来筛选同行的信誉。我们发现,这些同行贷款机构预测个人贷款违约可能性的准确率比借款人的确切信用评分高出45%,贷款人只看到一个信用类别。此外,同行贷款人的预测能力达到了计量经济学家的87%,后者观察了借款人的所有标准财务信息。在评估低质量借款人时,通过软信息或非标准信息进行筛选相对更重要。我们的研究结果强调了汇总同行意见和利用非标准信息如何提高贷款效率。这篇论文被财务部门的Amit Seru接受。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Screening Peers Softly: Inferring the Quality of Small Borrowers
This paper examines the performance of new online lending markets that rely on nonexpert individuals to screen their peers' creditworthiness. We find that these peer lenders predict an individual's likelihood of defaulting on a loan with 45% greater accuracy than the borrower's exact credit score unobserved by the lenders, who only see a credit category. Moreover, peer lenders achieve 87% of the predictive power of an econometrician who observes all standard financial information about borrowers. Screening through soft or nonstandard information is relatively more important when evaluating lower-quality borrowers. Our results highlight how aggregating over the views of peers and leveraging nonstandard information can enhance lending efficiency. This paper was accepted by Amit Seru, finance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信