基于深度图像三维目标检测的未知目标分割类设计

Tatsuya Amemiya, T. Tasaki
{"title":"基于深度图像三维目标检测的未知目标分割类设计","authors":"Tatsuya Amemiya, T. Tasaki","doi":"10.1109/IEEECONF49454.2021.9382606","DOIUrl":null,"url":null,"abstract":"We aim to improve unknown object detection. We also deal with problem of designing the optimal class for semantic segmentation using depth image. There was a problem that unknown classes of obstacles were mistaken for road in semantic segmentation using depth image. Therefore, we focus on the superiority of 3D object detection in a depth image. The depth image is good at separating between horizontal plane and 3D objects. For this reason, we develop a method for changing the number of training classes from baseline 12 classes to new 3 classes (void, plane, 3D object) for segmentation, which are optimal to detect unknown object by using depth images. As a result, IoU of unknown obstacle improve +6.9point than baseline method.","PeriodicalId":395378,"journal":{"name":"2021 IEEE/SICE International Symposium on System Integration (SII)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Design of Class in Unknown Object Segmentation Focusing on 3D Object Detection in Depth Image\",\"authors\":\"Tatsuya Amemiya, T. Tasaki\",\"doi\":\"10.1109/IEEECONF49454.2021.9382606\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We aim to improve unknown object detection. We also deal with problem of designing the optimal class for semantic segmentation using depth image. There was a problem that unknown classes of obstacles were mistaken for road in semantic segmentation using depth image. Therefore, we focus on the superiority of 3D object detection in a depth image. The depth image is good at separating between horizontal plane and 3D objects. For this reason, we develop a method for changing the number of training classes from baseline 12 classes to new 3 classes (void, plane, 3D object) for segmentation, which are optimal to detect unknown object by using depth images. As a result, IoU of unknown obstacle improve +6.9point than baseline method.\",\"PeriodicalId\":395378,\"journal\":{\"name\":\"2021 IEEE/SICE International Symposium on System Integration (SII)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE/SICE International Symposium on System Integration (SII)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEEECONF49454.2021.9382606\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/SICE International Symposium on System Integration (SII)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEEECONF49454.2021.9382606","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们的目标是改进未知目标检测。本文还讨论了深度图像语义分割的最优类的设计问题。在深度图像语义分割中,存在将未知类别的障碍物误认为道路的问题。因此,我们关注的是深度图像中三维目标检测的优越性。深度图像对水平面和三维物体的分离效果较好。为此,我们开发了一种方法,将训练类别的数量从基线的12个类别更改为新的3个类别(虚空,平面,3D物体)进行分割,这是使用深度图像检测未知物体的最佳方法。结果未知障碍IoU较基线法提高+6.9分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design of Class in Unknown Object Segmentation Focusing on 3D Object Detection in Depth Image
We aim to improve unknown object detection. We also deal with problem of designing the optimal class for semantic segmentation using depth image. There was a problem that unknown classes of obstacles were mistaken for road in semantic segmentation using depth image. Therefore, we focus on the superiority of 3D object detection in a depth image. The depth image is good at separating between horizontal plane and 3D objects. For this reason, we develop a method for changing the number of training classes from baseline 12 classes to new 3 classes (void, plane, 3D object) for segmentation, which are optimal to detect unknown object by using depth images. As a result, IoU of unknown obstacle improve +6.9point than baseline method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信