Jiwon Lee, Epimitheas Georgitzikis, Yunlong Li, Ziduo Lin, Jihoon Park, I. Lieberman, D. Cheyns, M. Jayapala, A. Lambrechts, S. Thijs, R. Stahl, P. Malinowski
{"title":"1.82 μm像素间距量子点图像传感器短波红外成像研究","authors":"Jiwon Lee, Epimitheas Georgitzikis, Yunlong Li, Ziduo Lin, Jihoon Park, I. Lieberman, D. Cheyns, M. Jayapala, A. Lambrechts, S. Thijs, R. Stahl, P. Malinowski","doi":"10.1109/IEDM13553.2020.9372018","DOIUrl":null,"url":null,"abstract":"A high pixel density image sensor for the Short Wave Infrared (SWIR) range is presented. A PbS quantum dot (QD) photodiode array is monolithically integrated on a silicon custom readout IC. Imaging in VIS and SWIR is demonstrated using focal plane arrays with pixel pitch down to record 1.82 μm. Through-silicon vision and lens-free imaging (LFI) microscopy are shown as applications that can benefit from high resolution/small pixel dimensions. In the LFI demonstration, the captured hologram is computationally reconstructed to acquire SWIR microscopic images, resulting in a wavelength equivalent resolution LFI microscopy system. To our knowledge, this is the smallest pitch SWIR pixel ever reported and the first LFI system using a QD image sensor.","PeriodicalId":415186,"journal":{"name":"2020 IEEE International Electron Devices Meeting (IEDM)","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Imaging in Short-Wave Infrared with 1.82 μm Pixel Pitch Quantum Dot Image Sensor\",\"authors\":\"Jiwon Lee, Epimitheas Georgitzikis, Yunlong Li, Ziduo Lin, Jihoon Park, I. Lieberman, D. Cheyns, M. Jayapala, A. Lambrechts, S. Thijs, R. Stahl, P. Malinowski\",\"doi\":\"10.1109/IEDM13553.2020.9372018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A high pixel density image sensor for the Short Wave Infrared (SWIR) range is presented. A PbS quantum dot (QD) photodiode array is monolithically integrated on a silicon custom readout IC. Imaging in VIS and SWIR is demonstrated using focal plane arrays with pixel pitch down to record 1.82 μm. Through-silicon vision and lens-free imaging (LFI) microscopy are shown as applications that can benefit from high resolution/small pixel dimensions. In the LFI demonstration, the captured hologram is computationally reconstructed to acquire SWIR microscopic images, resulting in a wavelength equivalent resolution LFI microscopy system. To our knowledge, this is the smallest pitch SWIR pixel ever reported and the first LFI system using a QD image sensor.\",\"PeriodicalId\":415186,\"journal\":{\"name\":\"2020 IEEE International Electron Devices Meeting (IEDM)\",\"volume\":\"62 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Electron Devices Meeting (IEDM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEDM13553.2020.9372018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Electron Devices Meeting (IEDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM13553.2020.9372018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Imaging in Short-Wave Infrared with 1.82 μm Pixel Pitch Quantum Dot Image Sensor
A high pixel density image sensor for the Short Wave Infrared (SWIR) range is presented. A PbS quantum dot (QD) photodiode array is monolithically integrated on a silicon custom readout IC. Imaging in VIS and SWIR is demonstrated using focal plane arrays with pixel pitch down to record 1.82 μm. Through-silicon vision and lens-free imaging (LFI) microscopy are shown as applications that can benefit from high resolution/small pixel dimensions. In the LFI demonstration, the captured hologram is computationally reconstructed to acquire SWIR microscopic images, resulting in a wavelength equivalent resolution LFI microscopy system. To our knowledge, this is the smallest pitch SWIR pixel ever reported and the first LFI system using a QD image sensor.