帕累托有效多目标回归测试用例优先级的实证评价

M. Epitropakis, S. Yoo, M. Harman, E. Burke
{"title":"帕累托有效多目标回归测试用例优先级的实证评价","authors":"M. Epitropakis, S. Yoo, M. Harman, E. Burke","doi":"10.1145/2771783.2771788","DOIUrl":null,"url":null,"abstract":"The aim of test case prioritisation is to determine an ordering of test cases that maximises the likelihood of early fault revelation. Previous prioritisation techniques have tended to be single objective, for which the additional greedy algorithm is the current state-of-the-art. Unlike test suite minimisation, multi objective test case prioritisation has not been thoroughly evaluated. This paper presents an extensive empirical study of the effectiveness of multi objective test case prioritisation, evaluating it on multiple versions of five widely-used benchmark programs and a much larger real world system of over 1 million lines of code. The paper also presents a lossless coverage compaction algorithm that dramatically scales the performance of all algorithms studied by between 2 and 4 orders of magnitude, making prioritisation practical for even very demanding problems.","PeriodicalId":264859,"journal":{"name":"Proceedings of the 2015 International Symposium on Software Testing and Analysis","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"89","resultStr":"{\"title\":\"Empirical evaluation of pareto efficient multi-objective regression test case prioritisation\",\"authors\":\"M. Epitropakis, S. Yoo, M. Harman, E. Burke\",\"doi\":\"10.1145/2771783.2771788\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of test case prioritisation is to determine an ordering of test cases that maximises the likelihood of early fault revelation. Previous prioritisation techniques have tended to be single objective, for which the additional greedy algorithm is the current state-of-the-art. Unlike test suite minimisation, multi objective test case prioritisation has not been thoroughly evaluated. This paper presents an extensive empirical study of the effectiveness of multi objective test case prioritisation, evaluating it on multiple versions of five widely-used benchmark programs and a much larger real world system of over 1 million lines of code. The paper also presents a lossless coverage compaction algorithm that dramatically scales the performance of all algorithms studied by between 2 and 4 orders of magnitude, making prioritisation practical for even very demanding problems.\",\"PeriodicalId\":264859,\"journal\":{\"name\":\"Proceedings of the 2015 International Symposium on Software Testing and Analysis\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"89\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2015 International Symposium on Software Testing and Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2771783.2771788\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 International Symposium on Software Testing and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2771783.2771788","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 89

摘要

测试用例优先级的目的是确定测试用例的顺序,使早期故障发现的可能性最大化。以前的优先排序技术往往是单一目标的,因此额外的贪心算法是当前的最新技术。与测试套件最小化不同,多目标测试用例优先级没有被彻底评估。本文对多目标测试用例优先级的有效性进行了广泛的实证研究,在五个广泛使用的基准程序的多个版本和一个超过100万行代码的更大的现实世界系统上进行了评估。本文还提出了一种无损覆盖压缩算法,该算法将所研究的所有算法的性能显著地扩展了2到4个数量级,使优先级即使对于非常苛刻的问题也是可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Empirical evaluation of pareto efficient multi-objective regression test case prioritisation
The aim of test case prioritisation is to determine an ordering of test cases that maximises the likelihood of early fault revelation. Previous prioritisation techniques have tended to be single objective, for which the additional greedy algorithm is the current state-of-the-art. Unlike test suite minimisation, multi objective test case prioritisation has not been thoroughly evaluated. This paper presents an extensive empirical study of the effectiveness of multi objective test case prioritisation, evaluating it on multiple versions of five widely-used benchmark programs and a much larger real world system of over 1 million lines of code. The paper also presents a lossless coverage compaction algorithm that dramatically scales the performance of all algorithms studied by between 2 and 4 orders of magnitude, making prioritisation practical for even very demanding problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信