基于图像数据的现代卷积神经网络烟雾检测的比较研究

A. Filonenko, Laksono Kurnianggoro, K. Jo
{"title":"基于图像数据的现代卷积神经网络烟雾检测的比较研究","authors":"A. Filonenko, Laksono Kurnianggoro, K. Jo","doi":"10.1109/HSI.2017.8004998","DOIUrl":null,"url":null,"abstract":"This work evaluates modern convolutional neural networks (CNN) for the task of smoke detection on image data. The networks that were tested are AlexNet, Inception-V3, Inception-V4, ResNet, VGG, and Xception. They all have shown high performance on huge ImageNet dataset, but the possibility of using such CNNs needed to be checked for a very specific task of smoke detection with a high diversity of possible scenarios and a small available dataset. Experimental results have shown that inception-based networks reach high performance when samples in the training dataset cover enough scenarios while accuracy dramatically drops when older networks are utilized.","PeriodicalId":355011,"journal":{"name":"2017 10th International Conference on Human System Interactions (HSI)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":"{\"title\":\"Comparative study of modern convolutional neural networks for smoke detection on image data\",\"authors\":\"A. Filonenko, Laksono Kurnianggoro, K. Jo\",\"doi\":\"10.1109/HSI.2017.8004998\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work evaluates modern convolutional neural networks (CNN) for the task of smoke detection on image data. The networks that were tested are AlexNet, Inception-V3, Inception-V4, ResNet, VGG, and Xception. They all have shown high performance on huge ImageNet dataset, but the possibility of using such CNNs needed to be checked for a very specific task of smoke detection with a high diversity of possible scenarios and a small available dataset. Experimental results have shown that inception-based networks reach high performance when samples in the training dataset cover enough scenarios while accuracy dramatically drops when older networks are utilized.\",\"PeriodicalId\":355011,\"journal\":{\"name\":\"2017 10th International Conference on Human System Interactions (HSI)\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"38\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 10th International Conference on Human System Interactions (HSI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HSI.2017.8004998\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 10th International Conference on Human System Interactions (HSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HSI.2017.8004998","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 38

摘要

这项工作评估了现代卷积神经网络(CNN)在图像数据上的烟雾检测任务。测试的网络包括AlexNet、Inception-V3、Inception-V4、ResNet、VGG和Xception。它们都在巨大的ImageNet数据集上表现出了高性能,但是使用这种cnn的可能性需要在一个非常具体的任务中进行检查,该任务具有高度多样性的可能场景和一个小的可用数据集。实验结果表明,当训练数据集中的样本覆盖足够的场景时,基于初始化的网络达到高性能,而当使用较旧的网络时,准确率急剧下降。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparative study of modern convolutional neural networks for smoke detection on image data
This work evaluates modern convolutional neural networks (CNN) for the task of smoke detection on image data. The networks that were tested are AlexNet, Inception-V3, Inception-V4, ResNet, VGG, and Xception. They all have shown high performance on huge ImageNet dataset, but the possibility of using such CNNs needed to be checked for a very specific task of smoke detection with a high diversity of possible scenarios and a small available dataset. Experimental results have shown that inception-based networks reach high performance when samples in the training dataset cover enough scenarios while accuracy dramatically drops when older networks are utilized.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信