A. Pražanová, Dominik Pilnaj, Zbyněk Plachý, V. Knap
{"title":"圆柱形锂离子电池回收预处理技术-环境评价:盐基溶液放电","authors":"A. Pražanová, Dominik Pilnaj, Zbyněk Plachý, V. Knap","doi":"10.1109/ISSE57496.2023.10168348","DOIUrl":null,"url":null,"abstract":"The popularity of lithium-ion batteries (LIBs) as crucial power sources has increased in recent years. LIBs represent a perspective technology for recycling because they comprise a high portion of valuable metals, such as nickel, manganese, cobalt, or lithium, and other metals, including aluminium, copper, and iron. Battery discharging represents an essential step in end-of-life (EOL) pretreatment, as it reduces the risk of fire or explosion in further processing. As a simple, quick, and inexpensive technique, an electrochemical discharging process via salt-based solutions is preferred for cylindrical cells. Nevertheless, it is necessary to consider the composition of obtained waste products and the possible environmental risks leading to their safe and non-hazardous EOL processing. This work evaluated discharging efficiency and environmental perspective for cylindrical LIB cells, which were treated using NaCl solution. All battery cells were discharged to the safe voltage limit (0.75 V) within 24 hours. Major organic components, including volatile solvents with high toxic hazards, such as carbonic acid esters, methyl salicylate, and propanoic acid esters, were identified in the waste solutions using gas chromatography with mass spectrometry (GC-MS). Moreover, the metal proportion in the solution was determined using inductively coupled plasma - optical emission spectrometry (ICP-OES) analysis; it is recommended to recover metals from the wastewater before EOL or cleaning treatment.","PeriodicalId":373085,"journal":{"name":"2023 46th International Spring Seminar on Electronics Technology (ISSE)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Techno-Environmental Evaluation of Recycling Pretreatment of Cylindrical Lithium-Ion Battery: Discharging via Salt-Based Solution\",\"authors\":\"A. Pražanová, Dominik Pilnaj, Zbyněk Plachý, V. Knap\",\"doi\":\"10.1109/ISSE57496.2023.10168348\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The popularity of lithium-ion batteries (LIBs) as crucial power sources has increased in recent years. LIBs represent a perspective technology for recycling because they comprise a high portion of valuable metals, such as nickel, manganese, cobalt, or lithium, and other metals, including aluminium, copper, and iron. Battery discharging represents an essential step in end-of-life (EOL) pretreatment, as it reduces the risk of fire or explosion in further processing. As a simple, quick, and inexpensive technique, an electrochemical discharging process via salt-based solutions is preferred for cylindrical cells. Nevertheless, it is necessary to consider the composition of obtained waste products and the possible environmental risks leading to their safe and non-hazardous EOL processing. This work evaluated discharging efficiency and environmental perspective for cylindrical LIB cells, which were treated using NaCl solution. All battery cells were discharged to the safe voltage limit (0.75 V) within 24 hours. Major organic components, including volatile solvents with high toxic hazards, such as carbonic acid esters, methyl salicylate, and propanoic acid esters, were identified in the waste solutions using gas chromatography with mass spectrometry (GC-MS). Moreover, the metal proportion in the solution was determined using inductively coupled plasma - optical emission spectrometry (ICP-OES) analysis; it is recommended to recover metals from the wastewater before EOL or cleaning treatment.\",\"PeriodicalId\":373085,\"journal\":{\"name\":\"2023 46th International Spring Seminar on Electronics Technology (ISSE)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 46th International Spring Seminar on Electronics Technology (ISSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSE57496.2023.10168348\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 46th International Spring Seminar on Electronics Technology (ISSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSE57496.2023.10168348","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Techno-Environmental Evaluation of Recycling Pretreatment of Cylindrical Lithium-Ion Battery: Discharging via Salt-Based Solution
The popularity of lithium-ion batteries (LIBs) as crucial power sources has increased in recent years. LIBs represent a perspective technology for recycling because they comprise a high portion of valuable metals, such as nickel, manganese, cobalt, or lithium, and other metals, including aluminium, copper, and iron. Battery discharging represents an essential step in end-of-life (EOL) pretreatment, as it reduces the risk of fire or explosion in further processing. As a simple, quick, and inexpensive technique, an electrochemical discharging process via salt-based solutions is preferred for cylindrical cells. Nevertheless, it is necessary to consider the composition of obtained waste products and the possible environmental risks leading to their safe and non-hazardous EOL processing. This work evaluated discharging efficiency and environmental perspective for cylindrical LIB cells, which were treated using NaCl solution. All battery cells were discharged to the safe voltage limit (0.75 V) within 24 hours. Major organic components, including volatile solvents with high toxic hazards, such as carbonic acid esters, methyl salicylate, and propanoic acid esters, were identified in the waste solutions using gas chromatography with mass spectrometry (GC-MS). Moreover, the metal proportion in the solution was determined using inductively coupled plasma - optical emission spectrometry (ICP-OES) analysis; it is recommended to recover metals from the wastewater before EOL or cleaning treatment.