{"title":"次三次二部图的Gap-[2]-顶点标记的复杂性","authors":"C.A. Weffort-Santos, C.N. Campos, R.C.S. Schouery","doi":"10.1016/j.entcs.2019.08.063","DOIUrl":null,"url":null,"abstract":"<div><p>A gap-[<em>k</em>]-vertex-labelling of a simple graph <em>G</em> = (<em>V</em>, <em>E</em>) is a pair (<em>π</em>, <em>c</em><sub><em>π</em></sub>) in which <em>π</em> : <em>V</em> (<em>G</em>) → {1, 2, ..., <em>k</em>} is an assignment of labels to the vertices of <em>G</em> and <em>c</em><sub><em>π</em></sub> : <em>V</em> (<em>G</em>) → {0, 1, ..., <em>k</em>} is a proper vertex-colouring of <em>G</em> such that, for every <em>v</em> ∈ <em>V</em> (<em>G</em>) of degree at least two, <em>c</em><sub><em>π</em></sub>(<em>v</em>) is induced by the largest difference, i.e. the largest gap, between the labels of its neighbours (cases where <em>d</em>(<em>v</em>) = 1 and <em>d</em>(<em>v</em>) = 0 are treated separately). Introduced in 2013 by A. Dehghan et al. [Dehghan, A., M. Sadeghi and A. Ahadi, <em>Algorithmic complexity of proper labeling problems</em>, Theoretical Computer Science <strong>495</strong> (2013), pp. 25–36.], they show that deciding whether a bipartite graph admits a gap-[2]-vertex-labelling is NP-complete and question the computational complexity of deciding whether cubic bipartite graphs admit such a labelling. In this work, we advance the study of the computational complexity for this class, proving that this problem remains NP-complete even when restricted to subcubic bipartite graphs.</p></div>","PeriodicalId":38770,"journal":{"name":"Electronic Notes in Theoretical Computer Science","volume":"346 ","pages":"Pages 725-734"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.entcs.2019.08.063","citationCount":"0","resultStr":"{\"title\":\"On the Complexity of Gap-[2]-vertex-labellings of Subcubic Bipartite Graphs\",\"authors\":\"C.A. Weffort-Santos, C.N. Campos, R.C.S. Schouery\",\"doi\":\"10.1016/j.entcs.2019.08.063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A gap-[<em>k</em>]-vertex-labelling of a simple graph <em>G</em> = (<em>V</em>, <em>E</em>) is a pair (<em>π</em>, <em>c</em><sub><em>π</em></sub>) in which <em>π</em> : <em>V</em> (<em>G</em>) → {1, 2, ..., <em>k</em>} is an assignment of labels to the vertices of <em>G</em> and <em>c</em><sub><em>π</em></sub> : <em>V</em> (<em>G</em>) → {0, 1, ..., <em>k</em>} is a proper vertex-colouring of <em>G</em> such that, for every <em>v</em> ∈ <em>V</em> (<em>G</em>) of degree at least two, <em>c</em><sub><em>π</em></sub>(<em>v</em>) is induced by the largest difference, i.e. the largest gap, between the labels of its neighbours (cases where <em>d</em>(<em>v</em>) = 1 and <em>d</em>(<em>v</em>) = 0 are treated separately). Introduced in 2013 by A. Dehghan et al. [Dehghan, A., M. Sadeghi and A. Ahadi, <em>Algorithmic complexity of proper labeling problems</em>, Theoretical Computer Science <strong>495</strong> (2013), pp. 25–36.], they show that deciding whether a bipartite graph admits a gap-[2]-vertex-labelling is NP-complete and question the computational complexity of deciding whether cubic bipartite graphs admit such a labelling. In this work, we advance the study of the computational complexity for this class, proving that this problem remains NP-complete even when restricted to subcubic bipartite graphs.</p></div>\",\"PeriodicalId\":38770,\"journal\":{\"name\":\"Electronic Notes in Theoretical Computer Science\",\"volume\":\"346 \",\"pages\":\"Pages 725-734\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.entcs.2019.08.063\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Notes in Theoretical Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1571066119301148\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Notes in Theoretical Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1571066119301148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
On the Complexity of Gap-[2]-vertex-labellings of Subcubic Bipartite Graphs
A gap-[k]-vertex-labelling of a simple graph G = (V, E) is a pair (π, cπ) in which π : V (G) → {1, 2, ..., k} is an assignment of labels to the vertices of G and cπ : V (G) → {0, 1, ..., k} is a proper vertex-colouring of G such that, for every v ∈ V (G) of degree at least two, cπ(v) is induced by the largest difference, i.e. the largest gap, between the labels of its neighbours (cases where d(v) = 1 and d(v) = 0 are treated separately). Introduced in 2013 by A. Dehghan et al. [Dehghan, A., M. Sadeghi and A. Ahadi, Algorithmic complexity of proper labeling problems, Theoretical Computer Science 495 (2013), pp. 25–36.], they show that deciding whether a bipartite graph admits a gap-[2]-vertex-labelling is NP-complete and question the computational complexity of deciding whether cubic bipartite graphs admit such a labelling. In this work, we advance the study of the computational complexity for this class, proving that this problem remains NP-complete even when restricted to subcubic bipartite graphs.
期刊介绍:
ENTCS is a venue for the rapid electronic publication of the proceedings of conferences, of lecture notes, monographs and other similar material for which quick publication and the availability on the electronic media is appropriate. Organizers of conferences whose proceedings appear in ENTCS, and authors of other material appearing as a volume in the series are allowed to make hard copies of the relevant volume for limited distribution. For example, conference proceedings may be distributed to participants at the meeting, and lecture notes can be distributed to those taking a course based on the material in the volume.