RAM-VO:视觉里程计的循环注意模型

Iury Cleveston, E. Colombini
{"title":"RAM-VO:视觉里程计的循环注意模型","authors":"Iury Cleveston, E. Colombini","doi":"10.5753/wtdr_ctdr.2021.18684","DOIUrl":null,"url":null,"abstract":"Determining the agent's pose is fundamental for developing autonomous vehicles. Visual Odometry (VO) algorithms estimate the egomotion using only visual differences from the input frames. The most recent VO methods implement deep-learning techniques using convolutional neural networks (CNN) widely, adding a high cost to process large images. Also, more data does not imply a better prediction, and the network may have to filter out useless information. In this context, we incrementally formulate a lightweight model called RAM-VO to perform visual odometry regressions using large monocular images. Our model is extended from the Recurrent Attention Model (RAM), which has emerged as a unique architecture that implements a hard attentional mechanism guided by reinforcement learning to select the essential input information. Our methodology modifies the RAM and improves the visual and temporal representation of information, generating the intermediary RAM-R and RAM-RC architectures. Also, we include the optical flow as contextual information for initializing the RL agent and implement the Proximal Policy Optimization (PPO) algorithm to learn a robust policy. The experimental results indicate that RAM-VO can perform regressions with six degrees of freedom using approximately 3 million parameters. Additionally, experiments on the KITTI dataset confirm that RAM-VO produces competitive results using only 5.7% of the input image.","PeriodicalId":334960,"journal":{"name":"Anais Estendidos do XIII Simpósio Brasileiro de Robótica e XVIII Simpósio Latino Americano de Robótica (SBR/LARS Estendido 2021)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RAM-VO: A Recurrent Attentional Model for Visual Odometry\",\"authors\":\"Iury Cleveston, E. Colombini\",\"doi\":\"10.5753/wtdr_ctdr.2021.18684\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Determining the agent's pose is fundamental for developing autonomous vehicles. Visual Odometry (VO) algorithms estimate the egomotion using only visual differences from the input frames. The most recent VO methods implement deep-learning techniques using convolutional neural networks (CNN) widely, adding a high cost to process large images. Also, more data does not imply a better prediction, and the network may have to filter out useless information. In this context, we incrementally formulate a lightweight model called RAM-VO to perform visual odometry regressions using large monocular images. Our model is extended from the Recurrent Attention Model (RAM), which has emerged as a unique architecture that implements a hard attentional mechanism guided by reinforcement learning to select the essential input information. Our methodology modifies the RAM and improves the visual and temporal representation of information, generating the intermediary RAM-R and RAM-RC architectures. Also, we include the optical flow as contextual information for initializing the RL agent and implement the Proximal Policy Optimization (PPO) algorithm to learn a robust policy. The experimental results indicate that RAM-VO can perform regressions with six degrees of freedom using approximately 3 million parameters. Additionally, experiments on the KITTI dataset confirm that RAM-VO produces competitive results using only 5.7% of the input image.\",\"PeriodicalId\":334960,\"journal\":{\"name\":\"Anais Estendidos do XIII Simpósio Brasileiro de Robótica e XVIII Simpósio Latino Americano de Robótica (SBR/LARS Estendido 2021)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais Estendidos do XIII Simpósio Brasileiro de Robótica e XVIII Simpósio Latino Americano de Robótica (SBR/LARS Estendido 2021)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5753/wtdr_ctdr.2021.18684\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais Estendidos do XIII Simpósio Brasileiro de Robótica e XVIII Simpósio Latino Americano de Robótica (SBR/LARS Estendido 2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/wtdr_ctdr.2021.18684","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

确定智能体的姿态是开发自动驾驶汽车的基础。视觉里程计(VO)算法仅使用输入帧的视觉差异来估计自运动。最新的VO方法广泛使用卷积神经网络(CNN)实现深度学习技术,增加了处理大型图像的高成本。此外,更多的数据并不意味着更好的预测,网络可能不得不过滤掉无用的信息。在这种情况下,我们逐步制定了一个轻量级模型,称为RAM-VO,使用大单目图像执行视觉里程回归。我们的方法修改了RAM并改进了信息的可视化和时态表示,生成了中间的RAM- r和RAM- rc架构。此外,我们将光流作为初始化RL代理的上下文信息,并实现近端策略优化(PPO)算法来学习鲁棒策略。实验结果表明,RAM-VO可以使用大约300万个参数进行6个自由度的回归。此外,在KITTI数据集上的实验证实,RAM-VO仅使用5.7%的输入图像就能产生具有竞争力的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
RAM-VO: A Recurrent Attentional Model for Visual Odometry
Determining the agent's pose is fundamental for developing autonomous vehicles. Visual Odometry (VO) algorithms estimate the egomotion using only visual differences from the input frames. The most recent VO methods implement deep-learning techniques using convolutional neural networks (CNN) widely, adding a high cost to process large images. Also, more data does not imply a better prediction, and the network may have to filter out useless information. In this context, we incrementally formulate a lightweight model called RAM-VO to perform visual odometry regressions using large monocular images. Our model is extended from the Recurrent Attention Model (RAM), which has emerged as a unique architecture that implements a hard attentional mechanism guided by reinforcement learning to select the essential input information. Our methodology modifies the RAM and improves the visual and temporal representation of information, generating the intermediary RAM-R and RAM-RC architectures. Also, we include the optical flow as contextual information for initializing the RL agent and implement the Proximal Policy Optimization (PPO) algorithm to learn a robust policy. The experimental results indicate that RAM-VO can perform regressions with six degrees of freedom using approximately 3 million parameters. Additionally, experiments on the KITTI dataset confirm that RAM-VO produces competitive results using only 5.7% of the input image.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信