gpu上的可伸缩和快速延迟持久性

Ardhi Wiratama Baskara Yudha, K. Kimura, Huiyang Zhou, Yan Solihin
{"title":"gpu上的可伸缩和快速延迟持久性","authors":"Ardhi Wiratama Baskara Yudha, K. Kimura, Huiyang Zhou, Yan Solihin","doi":"10.1109/IISWC50251.2020.00032","DOIUrl":null,"url":null,"abstract":"GPUs applications, including many scientific and machine learning applications, increasingly demand larger memory capacity. NVM is promising higher density compared to DRAM and better future scaling potentials. Long running GPU applications can benefit from NVM by exploiting its persistency, allowing crash recovery of data in memory. In this paper, we propose mapping Lazy Persistency (LP) to GPUs and identify the design space of such mapping. We then characterize LP performance on GPUs, varying the checksum type, reduction method, use of locking, and hash table designs. Armed with insights into the performance bottlenecks, we propose a hash table-less method that performs well on hundreds and thousands of threads, achieving persistency with nearly negligible (2.1%) slowdown for a variety of representative benchmarks. We also propose a directive-based programming language support to simplify programming effort for adding LP to GPU applications.","PeriodicalId":365983,"journal":{"name":"2020 IEEE International Symposium on Workload Characterization (IISWC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Scalable and Fast Lazy Persistency on GPUs\",\"authors\":\"Ardhi Wiratama Baskara Yudha, K. Kimura, Huiyang Zhou, Yan Solihin\",\"doi\":\"10.1109/IISWC50251.2020.00032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"GPUs applications, including many scientific and machine learning applications, increasingly demand larger memory capacity. NVM is promising higher density compared to DRAM and better future scaling potentials. Long running GPU applications can benefit from NVM by exploiting its persistency, allowing crash recovery of data in memory. In this paper, we propose mapping Lazy Persistency (LP) to GPUs and identify the design space of such mapping. We then characterize LP performance on GPUs, varying the checksum type, reduction method, use of locking, and hash table designs. Armed with insights into the performance bottlenecks, we propose a hash table-less method that performs well on hundreds and thousands of threads, achieving persistency with nearly negligible (2.1%) slowdown for a variety of representative benchmarks. We also propose a directive-based programming language support to simplify programming effort for adding LP to GPU applications.\",\"PeriodicalId\":365983,\"journal\":{\"name\":\"2020 IEEE International Symposium on Workload Characterization (IISWC)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Symposium on Workload Characterization (IISWC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IISWC50251.2020.00032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Symposium on Workload Characterization (IISWC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IISWC50251.2020.00032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

gpu应用,包括许多科学和机器学习应用,越来越需要更大的内存容量。与DRAM相比,NVM具有更高的密度和更好的未来缩放潜力。长时间运行的GPU应用程序可以利用NVM的持久性,允许内存中的数据崩溃恢复,从而受益于NVM。本文提出将延迟持久性(LP)映射到gpu上,并确定了这种映射的设计空间。然后,我们描述了gpu上的LP性能,改变了校验和类型、缩减方法、锁的使用和哈希表设计。有了对性能瓶颈的深入了解,我们提出了一种无哈希表的方法,该方法在成百上千个线程上表现良好,在各种代表性基准测试中,以几乎可以忽略不计的速度(2.1%)实现持久性。我们还提出了一种基于指令的编程语言支持,以简化在GPU应用程序中添加LP的编程工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scalable and Fast Lazy Persistency on GPUs
GPUs applications, including many scientific and machine learning applications, increasingly demand larger memory capacity. NVM is promising higher density compared to DRAM and better future scaling potentials. Long running GPU applications can benefit from NVM by exploiting its persistency, allowing crash recovery of data in memory. In this paper, we propose mapping Lazy Persistency (LP) to GPUs and identify the design space of such mapping. We then characterize LP performance on GPUs, varying the checksum type, reduction method, use of locking, and hash table designs. Armed with insights into the performance bottlenecks, we propose a hash table-less method that performs well on hundreds and thousands of threads, achieving persistency with nearly negligible (2.1%) slowdown for a variety of representative benchmarks. We also propose a directive-based programming language support to simplify programming effort for adding LP to GPU applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信